达尼奥
斑马鱼
幼虫
生物化学
生态学
生物
基因
作者
Yudi Wang,Jing Wang,Jiaoyue Cong,Haihong Zhang,Zhiyuan Gong,Hongwen Sun,Lei Wang,Zhenghua Duan
标识
DOI:10.1016/j.scitotenv.2023.166898
摘要
Although nanoplastics (NPs) can penetrate the blood-brain barrier and accumulate in the brain, the neurotoxicity of these particles and the mechanisms associated with their unique physio-chemical properties have yet to be sufficiently ascertained. In this study, we assessed the neuroexcitatory symptoms of zebrafish (Danio rerio) larvae treated with polystyrene (PS) NPs based on an examination of locomotory behaviour, dopamine levels, and acetylcholinesterase activity. We found that PS NPs caused oxidative stress and inhibited atoh1a expression in the cerebellum of Tg(atoh1a:dTomato) transgenic zebrafish larvae, thereby indicating damage to the central nervous system. In contrast to the Parkinson's disease (PD) like effects induced by most types of nanoparticles, such as graphene oxide, we established that PS NPs influenced the neuronal proteomic profiles of zebrafish larvae in a manner contrary to the molecular pathways characteristic of PD-like effects, which could be explained by the molecular dynamic simulation. Unlike graphene oxide nanoparticles that promote significant change in the internal structure of neuroproteins, the complex macromolecular polymers of PS NPs promoted the coalescence and increased expression of neuroproteins, thereby plausibly contributing to the neuroexcitatory symptoms observed in treated zebrafish larvae. Consequently, compared with traditional nanoparticles, we believe that the unique physio-chemical properties of NPs could be a potential factor contributing to their toxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI