Intelligent Fault Diagnostic Model for Industrial Equipment Based on Multimodal Knowledge Graph

计算机科学 推论 人工智能 数据挖掘 故障检测与隔离 自动化 图形 断层模型 断层(地质) 余弦相似度 机器学习 模式识别(心理学) 工程类 机械工程 电子线路 电气工程 理论计算机科学 地震学 执行机构 地质学
作者
Yuezhong Wu,Fumin Liu,Lanjun Wan,Zhongmei Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (21): 26269-26278 被引量:6
标识
DOI:10.1109/jsen.2023.3316473
摘要

Industrial equipment failure diagnosis is a crucial issue that impacts the national industrial manufacturing level, economic cycle development, and sustainable technological advancement. A multimodal knowledge graph (MMKG)-based intelligent diagnostic model for industrial equipment fault is proposed to address the issues of insufficient and inadequate fault data samples encountered when using a single-mode model for fault diagnosis in existing industrial equipment. This model does not require extensive data learning for equipment fault diagnosis in complex industrial scenarios. The model utilizes an improved faster region with CNN (Faster RCNN) features the object detection module to extract visual information feature vectors of semiordered main and nonmain objects. These feature vectors are then mapped to entity, attribute, and relationship vectors in a knowledge graph using cosine similarity for feature correspondence mapping. The semantic matching inference is performed based on this mapping, resulting in a set of fault triplets. Finally, the bidirectional and autoregressive transformers (BARTs) text generation model processes this triplet set to generate fault diagnosis texts. Experimental results demonstrate that the improved Faster RCNN object detection model achieves a 1.2% increase in confidence when trained with small training datasets. The accuracy of generated fault description texts reaches approximately 98% compared to standard texts. The model presented in this article addresses the challenge of diagnosing faults in industrial equipment, particularly in complex scenarios with limited data, such as substations. It enhances the target detection model to effectively extract visual features even when data is scarce. Additionally, it utilizes an MMKG to enable interpretable intelligent decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allen完成签到,获得积分10
1秒前
1秒前
楪i完成签到,获得积分10
1秒前
值得完成签到,获得积分10
3秒前
3秒前
远山完成签到,获得积分10
4秒前
星星发布了新的文献求助10
4秒前
nanhe698发布了新的文献求助20
4秒前
阳光无声完成签到,获得积分10
4秒前
金色年华发布了新的文献求助10
4秒前
shatang完成签到,获得积分10
5秒前
6秒前
Owen应助一天八杯水采纳,获得10
6秒前
所所应助静静子采纳,获得10
7秒前
所所应助jy采纳,获得10
7秒前
hkxfg完成签到,获得积分10
7秒前
duo完成签到,获得积分10
8秒前
9秒前
spurs17发布了新的文献求助10
9秒前
9秒前
善学以致用应助BaekHyun采纳,获得10
9秒前
10秒前
10秒前
nanhe698完成签到,获得积分10
11秒前
11秒前
李本来完成签到,获得积分20
12秒前
看看发布了新的文献求助10
12秒前
ZZY完成签到,获得积分10
12秒前
DQY完成签到,获得积分10
13秒前
BONBON完成签到,获得积分20
13秒前
动听导师发布了新的文献求助10
14秒前
14秒前
季忆完成签到,获得积分10
14秒前
小周发布了新的文献求助10
15秒前
smile发布了新的文献求助10
15秒前
16秒前
Lore完成签到 ,获得积分10
16秒前
16秒前
jiang完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808