Intelligent Fault Diagnostic Model for Industrial Equipment Based on Multimodal Knowledge Graph

计算机科学 推论 人工智能 数据挖掘 故障检测与隔离 自动化 图形 断层模型 断层(地质) 余弦相似度 机器学习 模式识别(心理学) 工程类 机械工程 电子线路 电气工程 理论计算机科学 地震学 执行机构 地质学
作者
Yuezhong Wu,Fumin Liu,Lanjun Wan,Zhongmei Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (21): 26269-26278 被引量:6
标识
DOI:10.1109/jsen.2023.3316473
摘要

Industrial equipment failure diagnosis is a crucial issue that impacts the national industrial manufacturing level, economic cycle development, and sustainable technological advancement. A multimodal knowledge graph (MMKG)-based intelligent diagnostic model for industrial equipment fault is proposed to address the issues of insufficient and inadequate fault data samples encountered when using a single-mode model for fault diagnosis in existing industrial equipment. This model does not require extensive data learning for equipment fault diagnosis in complex industrial scenarios. The model utilizes an improved faster region with CNN (Faster RCNN) features the object detection module to extract visual information feature vectors of semiordered main and nonmain objects. These feature vectors are then mapped to entity, attribute, and relationship vectors in a knowledge graph using cosine similarity for feature correspondence mapping. The semantic matching inference is performed based on this mapping, resulting in a set of fault triplets. Finally, the bidirectional and autoregressive transformers (BARTs) text generation model processes this triplet set to generate fault diagnosis texts. Experimental results demonstrate that the improved Faster RCNN object detection model achieves a 1.2% increase in confidence when trained with small training datasets. The accuracy of generated fault description texts reaches approximately 98% compared to standard texts. The model presented in this article addresses the challenge of diagnosing faults in industrial equipment, particularly in complex scenarios with limited data, such as substations. It enhances the target detection model to effectively extract visual features even when data is scarce. Additionally, it utilizes an MMKG to enable interpretable intelligent decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助yoyo20012623采纳,获得50
刚刚
刚刚
2秒前
fashing完成签到,获得积分10
2秒前
芜湖完成签到,获得积分10
2秒前
温润如玉坤完成签到,获得积分10
2秒前
lyf完成签到,获得积分10
2秒前
元气糖完成签到,获得积分10
3秒前
SciGPT应助琢钰采纳,获得10
3秒前
聪慧芷巧发布了新的文献求助10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
ludong_0应助科研通管家采纳,获得10
4秒前
oh应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
DijiaXu应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
大力的老虎完成签到,获得积分10
5秒前
fff完成签到 ,获得积分10
6秒前
杨洋完成签到,获得积分10
6秒前
Tracy.完成签到,获得积分10
6秒前
7秒前
lwj完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
皮皮团完成签到 ,获得积分10
8秒前
9秒前
舒心衣发布了新的文献求助10
9秒前
中海完成签到,获得积分10
9秒前
ludong_0完成签到,获得积分10
9秒前
kanglan完成签到,获得积分10
9秒前
健康富裕完成签到 ,获得积分10
10秒前
JingP完成签到,获得积分10
10秒前
任全强完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027