A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 材料科学 复合材料 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ee完成签到,获得积分10
刚刚
小小油关注了科研通微信公众号
刚刚
1秒前
乌托邦发布了新的文献求助10
1秒前
英俊001发布了新的文献求助10
2秒前
fsf完成签到,获得积分10
2秒前
2秒前
qiuhai发布了新的文献求助10
3秒前
3秒前
臭妹妹发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
juphen2发布了新的文献求助10
6秒前
垃圾筐发布了新的文献求助10
6秒前
张茜涵发布了新的文献求助10
6秒前
7秒前
眼睛大怜容完成签到 ,获得积分10
7秒前
南寻完成签到,获得积分10
7秒前
科研通AI6应助lll采纳,获得10
8秒前
英姑应助qiuhai采纳,获得10
8秒前
李爱国应助濮阳香采纳,获得10
8秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
feliciaaa完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
汉堡包应助洛伊儿采纳,获得10
16秒前
万能图书馆应助wang采纳,获得10
18秒前
qiuhai发布了新的文献求助10
19秒前
20秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
科研通AI6应助lizhiqian2024采纳,获得10
22秒前
blue完成签到 ,获得积分10
22秒前
领导范儿应助lizhiqian2024采纳,获得10
23秒前
23秒前
Joey完成签到,获得积分10
23秒前
整齐墨镜应助汤哈哈哈哈采纳,获得10
24秒前
Akim应助汤哈哈哈哈采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666290
求助须知:如何正确求助?哪些是违规求助? 4880818
关于积分的说明 15116881
捐赠科研通 4825362
什么是DOI,文献DOI怎么找? 2583279
邀请新用户注册赠送积分活动 1537446
关于科研通互助平台的介绍 1495652