A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 材料科学 复合材料 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wcuzhl完成签到,获得积分10
刚刚
大王869完成签到 ,获得积分10
1秒前
大模型应助cai采纳,获得10
1秒前
3秒前
橙橙橙完成签到,获得积分10
4秒前
星海殇完成签到 ,获得积分0
4秒前
竞燃查无此人完成签到,获得积分10
5秒前
5秒前
想把太阳揣兜里完成签到,获得积分10
6秒前
12334完成签到,获得积分10
6秒前
6秒前
单纯完成签到,获得积分10
7秒前
8秒前
独特纸飞机完成签到 ,获得积分10
8秒前
隐形曼青应助yiyi采纳,获得10
9秒前
9秒前
虚拟的梦安完成签到,获得积分10
10秒前
joey完成签到,获得积分10
10秒前
02完成签到,获得积分10
10秒前
花痴的慕蕊完成签到,获得积分10
11秒前
lzzzz完成签到,获得积分10
12秒前
czj完成签到,获得积分10
12秒前
曲琦饼完成签到,获得积分10
12秒前
qingfeng完成签到,获得积分10
12秒前
优秀的白筠完成签到,获得积分10
12秒前
13秒前
黑猫小苍完成签到,获得积分10
13秒前
Annie完成签到 ,获得积分10
13秒前
欣喜书桃完成签到,获得积分10
13秒前
以恒之心发布了新的文献求助10
14秒前
15秒前
羊皮大哈发布了新的文献求助10
16秒前
叹千泠完成签到,获得积分10
17秒前
17秒前
倒数第二完成签到,获得积分10
18秒前
卷大喵完成签到,获得积分10
18秒前
青青草完成签到,获得积分10
18秒前
菠菜菜str完成签到,获得积分10
19秒前
Rainbow完成签到,获得积分10
19秒前
年华完成签到,获得积分10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443