亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 材料科学 复合材料 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
13秒前
16秒前
chenbo发布了新的文献求助10
18秒前
愀萱完成签到,获得积分10
27秒前
chenbo完成签到,获得积分20
29秒前
29秒前
尖尖发布了新的文献求助10
34秒前
Jarvis完成签到,获得积分10
40秒前
隐形曼青应助kenshin采纳,获得10
50秒前
1分钟前
1分钟前
1分钟前
风云鱼发布了新的文献求助10
1分钟前
calm完成签到,获得积分10
1分钟前
轻松棉花糖完成签到 ,获得积分10
1分钟前
1分钟前
oikage完成签到 ,获得积分10
1分钟前
风云鱼完成签到,获得积分20
1分钟前
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
JIANG发布了新的文献求助20
1分钟前
2分钟前
Ian_Zhang应助Mollyxueyue采纳,获得30
2分钟前
ljl86400完成签到,获得积分10
2分钟前
2分钟前
JIANG完成签到,获得积分10
2分钟前
626发布了新的文献求助10
2分钟前
doudou完成签到,获得积分10
2分钟前
2分钟前
2分钟前
传奇3应助626采纳,获得10
2分钟前
烟花应助yo采纳,获得10
2分钟前
善学以致用应助玖伍采纳,获得10
2分钟前
MiaCong完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426353
求助须知:如何正确求助?哪些是违规求助? 4540126
关于积分的说明 14171717
捐赠科研通 4457887
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435700
关于科研通互助平台的介绍 1413192