已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 复合材料 材料科学 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上誉完成签到 ,获得积分10
3秒前
8秒前
天天摸鱼完成签到,获得积分10
12秒前
zhao完成签到,获得积分10
22秒前
FashionBoy应助木讷山采纳,获得10
23秒前
23秒前
26秒前
肥鲸鱼发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
44秒前
难过板栗完成签到 ,获得积分10
44秒前
45秒前
45秒前
斐嘿嘿发布了新的文献求助10
49秒前
852应助Alice采纳,获得10
49秒前
杜本内发布了新的文献求助10
50秒前
Ruuo616完成签到 ,获得积分10
51秒前
ponytail发布了新的文献求助10
53秒前
longh完成签到,获得积分10
53秒前
悦耳傥完成签到 ,获得积分10
54秒前
斐嘿嘿完成签到,获得积分10
55秒前
Ruri发布了新的文献求助10
57秒前
隐形曼青应助科研通管家采纳,获得10
59秒前
59秒前
59秒前
1分钟前
冷静的小虾米完成签到 ,获得积分10
1分钟前
夜行完成签到,获得积分10
1分钟前
1分钟前
月亮完成签到 ,获得积分10
1分钟前
无花果应助小澜孩采纳,获得10
1分钟前
卡卡完成签到 ,获得积分10
1分钟前
1分钟前
jyy应助lf采纳,获得10
1分钟前
Alice完成签到,获得积分10
1分钟前
1分钟前
白日梦发布了新的文献求助10
1分钟前
木讷山发布了新的文献求助10
1分钟前
1分钟前
果粒橙完成签到 ,获得积分10
1分钟前
123321完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520689
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613