A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 材料科学 复合材料 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助李佳轩采纳,获得10
1秒前
cccccgggmmm关注了科研通微信公众号
2秒前
希文完成签到,获得积分10
3秒前
4秒前
David完成签到,获得积分10
4秒前
洁净的嘉熙完成签到,获得积分10
5秒前
5秒前
Ava应助lxy采纳,获得30
6秒前
www完成签到,获得积分10
8秒前
叶子完成签到,获得积分10
8秒前
9秒前
爱吃肉完成签到,获得积分10
9秒前
daydream关注了科研通微信公众号
9秒前
任栎名完成签到,获得积分20
11秒前
zeng完成签到,获得积分10
11秒前
11秒前
hewd3发布了新的文献求助10
14秒前
Jarvis完成签到,获得积分10
15秒前
orixero应助愤怒的山兰采纳,获得10
15秒前
15秒前
15秒前
意面米助发布了新的文献求助10
16秒前
17秒前
18秒前
xixi发布了新的文献求助10
20秒前
22秒前
22秒前
彭于晏应助hewd3采纳,获得10
23秒前
popvich应助Azlne采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
干饭虫应助科研通管家采纳,获得10
24秒前
Rita应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
干饭虫应助科研通管家采纳,获得10
24秒前
干饭虫应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
25秒前
杨好圆完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979699
求助须知:如何正确求助?哪些是违规求助? 4232313
关于积分的说明 13183302
捐赠科研通 4023465
什么是DOI,文献DOI怎么找? 2201316
邀请新用户注册赠送积分活动 1213777
关于科研通互助平台的介绍 1130020