清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 材料科学 复合材料 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微卫星不稳定完成签到 ,获得积分0
12秒前
眯眯眼的雪莲完成签到 ,获得积分10
21秒前
QCB完成签到 ,获得积分0
26秒前
CodeCraft应助陈博士采纳,获得10
29秒前
ceeray23应助科研通管家采纳,获得10
45秒前
SciGPT应助科研通管家采纳,获得10
45秒前
ceeray23应助科研通管家采纳,获得10
45秒前
危机的慕卉完成签到 ,获得积分10
55秒前
sonicker完成签到 ,获得积分10
1分钟前
qq完成签到 ,获得积分10
1分钟前
拿铁小笼包完成签到,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
jsnd完成签到 ,获得积分10
1分钟前
lod完成签到,获得积分10
1分钟前
神勇的天问完成签到 ,获得积分10
2分钟前
2分钟前
无悔完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研小菜鸟采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
JESI完成签到,获得积分10
3分钟前
sube完成签到 ,获得积分10
3分钟前
jesi完成签到,获得积分10
3分钟前
赵芳完成签到,获得积分10
3分钟前
Cassie关注了科研通微信公众号
4分钟前
vbnn完成签到 ,获得积分10
4分钟前
4分钟前
缓慢雨南发布了新的文献求助10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
kgf完成签到 ,获得积分20
4分钟前
曹国庆完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685645
关于积分的说明 14838712
捐赠科研通 4672874
什么是DOI,文献DOI怎么找? 2538369
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965