已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 材料科学 复合材料 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江心洲农民完成签到,获得积分10
刚刚
英俊芷完成签到 ,获得积分10
1秒前
4秒前
花深粥完成签到,获得积分10
5秒前
神农完成签到,获得积分10
5秒前
szh完成签到,获得积分10
7秒前
共享精神应助小刘哥儿采纳,获得10
9秒前
夜星子发布了新的文献求助10
9秒前
10秒前
11秒前
善学以致用应助山水之乐采纳,获得10
11秒前
11秒前
1111完成签到 ,获得积分10
11秒前
陶醉晓凡发布了新的文献求助10
12秒前
123完成签到,获得积分10
13秒前
FashionBoy应助Lavender采纳,获得10
13秒前
13秒前
cc完成签到,获得积分10
14秒前
小桃枝发布了新的文献求助10
15秒前
zeng完成签到,获得积分10
16秒前
moon完成签到,获得积分10
16秒前
16秒前
英姑应助大吉采纳,获得10
17秒前
17秒前
Hello应助wdd采纳,获得10
17秒前
CodeCraft应助小刘哥儿采纳,获得10
17秒前
18秒前
羽羽完成签到 ,获得积分10
18秒前
Raven应助胡豆采纳,获得10
18秒前
19秒前
xiaomeng完成签到 ,获得积分10
19秒前
逃跑冰蓝发布了新的文献求助10
19秒前
俭朴映阳发布了新的文献求助10
20秒前
打打应助Zyc采纳,获得10
22秒前
阿明留下了新的社区评论
23秒前
24秒前
Criminology34应助小刘哥儿采纳,获得10
25秒前
小林驳回了wjk应助
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312489
求助须知:如何正确求助?哪些是违规求助? 4456148
关于积分的说明 13865749
捐赠科研通 4344664
什么是DOI,文献DOI怎么找? 2386013
邀请新用户注册赠送积分活动 1380317
关于科研通互助平台的介绍 1348719