A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 材料科学 复合材料 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
水木完成签到,获得积分10
刚刚
thuuu发布了新的文献求助10
刚刚
无言已对发布了新的文献求助10
刚刚
深情安青应助疯狂的麦咭采纳,获得10
1秒前
田様应助小小怪下士采纳,获得10
1秒前
1秒前
动人的雁枫完成签到 ,获得积分10
1秒前
情怀应助Christine采纳,获得30
3秒前
4秒前
nbing完成签到,获得积分10
4秒前
动人的雁枫关注了科研通微信公众号
5秒前
geoyuan完成签到,获得积分10
5秒前
5秒前
5秒前
PANGDA完成签到 ,获得积分10
6秒前
贾翔发布了新的文献求助10
6秒前
7秒前
小明明应助Master_Ye采纳,获得10
7秒前
英俊的铭应助可不采纳,获得10
8秒前
Garfield完成签到,获得积分10
8秒前
无聊的翠芙完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
可乐清欢发布了新的文献求助10
9秒前
tangaohao_123456完成签到,获得积分10
9秒前
10秒前
10秒前
机灵水卉发布了新的文献求助10
10秒前
DARKNESS发布了新的文献求助10
11秒前
11秒前
搜集达人应助qyj采纳,获得10
11秒前
透明人发布了新的文献求助50
11秒前
11秒前
pluto应助紫罗兰花海采纳,获得10
11秒前
乔乔兔发布了新的文献求助10
12秒前
12秒前
司徒水绿完成签到 ,获得积分10
13秒前
14秒前
14秒前
Carlnye完成签到 ,获得积分20
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646