A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 材料科学 复合材料 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助xiaoxiao采纳,获得10
2秒前
2秒前
科研通AI6应助zzz采纳,获得30
3秒前
Zsx完成签到,获得积分10
3秒前
3秒前
4秒前
Saisaki完成签到,获得积分10
4秒前
Bourne完成签到,获得积分10
4秒前
小萝卜头完成签到,获得积分10
4秒前
积极向上的银杏完成签到,获得积分10
5秒前
5秒前
5秒前
李健的小迷弟应助初秋采纳,获得10
5秒前
5秒前
6秒前
6秒前
浅海111完成签到,获得积分10
6秒前
syy发布了新的文献求助30
6秒前
foceman发布了新的文献求助10
6秒前
疯狂的沛岚完成签到,获得积分10
6秒前
7秒前
7秒前
秦醉薇完成签到,获得积分10
7秒前
7秒前
淡然乐儿完成签到 ,获得积分10
7秒前
7秒前
清澈发布了新的文献求助30
8秒前
8秒前
8秒前
哑牛发布了新的文献求助30
9秒前
9秒前
9秒前
斯文败类应助yao chen采纳,获得10
10秒前
秦醉薇发布了新的文献求助30
10秒前
10秒前
pup_zillion完成签到,获得积分20
10秒前
chen发布了新的文献求助30
10秒前
10秒前
传奇3应助刘可采纳,获得10
10秒前
顺子发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646155
求助须知:如何正确求助?哪些是违规求助? 4770208
关于积分的说明 15033403
捐赠科研通 4804753
什么是DOI,文献DOI怎么找? 2569195
邀请新用户注册赠送积分活动 1526252
关于科研通互助平台的介绍 1485762