已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 材料科学 复合材料 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水煮菜完成签到,获得积分20
刚刚
1秒前
上善若水呦完成签到,获得积分10
1秒前
3438881284完成签到,获得积分10
1秒前
金毛上将完成签到,获得积分10
2秒前
Chouvikin完成签到,获得积分10
4秒前
borisgugugugu发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
水煮菜发布了新的文献求助10
6秒前
少川完成签到 ,获得积分10
6秒前
还好完成签到 ,获得积分10
6秒前
7秒前
欣欣完成签到 ,获得积分10
7秒前
不个完成签到 ,获得积分10
7秒前
hh完成签到 ,获得积分10
8秒前
9秒前
东风夜放花千树完成签到 ,获得积分10
10秒前
大个应助苏打饼干酱采纳,获得10
11秒前
xiaomaxia完成签到,获得积分10
11秒前
瞿寒完成签到,获得积分10
12秒前
Gds发布了新的文献求助10
12秒前
汤姆完成签到,获得积分10
12秒前
tt完成签到 ,获得积分10
14秒前
洁净的草丛完成签到,获得积分20
15秒前
啦啦完成签到,获得积分10
15秒前
打打应助wonder123采纳,获得10
15秒前
丹丹丹应助葡萄柚采纳,获得10
16秒前
borisgugugugu完成签到,获得积分10
16秒前
hhee完成签到,获得积分10
17秒前
leemonster完成签到,获得积分10
17秒前
19秒前
yuan完成签到,获得积分10
21秒前
Criminology34应助怕黑的蓝天采纳,获得10
21秒前
魁梧的衫完成签到 ,获得积分10
21秒前
思源应助RFlord采纳,获得30
22秒前
勤奋发布了新的文献求助10
23秒前
25秒前
成就书雪完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504