A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 复合材料 材料科学 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦斌发布了新的文献求助10
2秒前
2秒前
gkhsdvkb完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
pcx发布了新的文献求助10
5秒前
5秒前
玖玥完成签到,获得积分10
6秒前
齐嘉懿发布了新的文献求助10
6秒前
月儿发布了新的文献求助10
8秒前
pcx完成签到,获得积分10
8秒前
刘小七发布了新的文献求助10
12秒前
东山发布了新的文献求助10
12秒前
Hanoi347发布了新的文献求助10
13秒前
喜悦斌完成签到,获得积分10
13秒前
14秒前
Ariok发布了新的文献求助10
14秒前
田様应助小北采纳,获得10
16秒前
17秒前
19秒前
19秒前
潇洒的浩然完成签到,获得积分10
19秒前
Lzced完成签到 ,获得积分10
19秒前
wubo完成签到,获得积分10
20秒前
20秒前
白鸿瑞发布了新的文献求助10
21秒前
田様应助经常的摸鱼采纳,获得10
21秒前
22秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
罗威椒完成签到,获得积分10
25秒前
12发布了新的文献求助10
26秒前
李健的粉丝团团长应助天南采纳,获得100
26秒前
高兴英完成签到,获得积分10
28秒前
健壮的紫夏完成签到,获得积分10
28秒前
烟花应助罗威椒采纳,获得10
29秒前
小北发布了新的文献求助10
30秒前
31秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571822
求助须知:如何正确求助?哪些是违规求助? 4656993
关于积分的说明 14718727
捐赠科研通 4597831
什么是DOI,文献DOI怎么找? 2523395
邀请新用户注册赠送积分活动 1494239
关于科研通互助平台的介绍 1464312