A graph attention network under probabilistic linguistic environment based on Bi-LSTM applied to film classification

可解释性 计算机科学 概率逻辑 图形 人工智能 情绪分析 口译(哲学) 骨料(复合) 自然语言处理 机器学习 理论计算机科学 材料科学 复合材料 程序设计语言
作者
Bin Yu,Ruipeng Cai,Jing Zhang,Yu Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:649: 119632-119632 被引量:7
标识
DOI:10.1016/j.ins.2023.119632
摘要

Film reviews contain rich and complex linguistic information that can reflect the opinions and emotions of the reviewers. However, existing methods for emotion classification of film reviews rely on quantifying qualitative evaluations numerically. This approach can lead to difficulties in interpretation, information loss, and performance degradation under massive data. In this paper, we propose a novel method that utilizes a probabilistic linguistic term set (PLTS) and graph attention network (GAT) to classify films based on their emotional content in long reviews. Firstly, the Bi-directional long short-term memory (Bi-LSTM) method is used to convert film reviews into distributed emotional probabilities. This approach not only captures the emotional information in reviews, but also avoids the limitations of numerical quantification. Secondly, using PLTS to represent emotional information not only considers the relationships of linguistic features but also captures multiple emotional information simultaneously. Finally, we utilize multiple GATs to learn and aggregate the distributed emotional probabilities, enabling our method to fully perceive multiple emotional information in the reviews. Experimental results demonstrate that our method outperforms other models in classification accuracy on the IMDB film review dataset. Our method emulates human thinking to analyze emotional information in reviews and uses a human-like attention mechanism to learn the interrelationship between emotions in film reviews. Therefore, our method exhibits significant improvements in both accuracy and interpretability compared to current models, making it applicable to diverse domains that necessitate the analysis of linguistic data. Overall, the proposed method in this paper presents a novel and effective approach to analyzing and classifying films based on linguistic reviews.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL完成签到,获得积分10
刚刚
八月宁静发布了新的文献求助10
刚刚
刚刚
1秒前
波鲁鲁爱喝酸奶完成签到 ,获得积分10
1秒前
2秒前
核桃应助钱浩然采纳,获得10
4秒前
4秒前
脑洞疼应助张张张哈哈哈采纳,获得10
4秒前
5秒前
颠覆乾坤发布了新的文献求助10
6秒前
小王加油啊啊啊完成签到 ,获得积分10
6秒前
虚幻沛文完成签到 ,获得积分10
7秒前
hua完成签到 ,获得积分10
7秒前
zyf发布了新的文献求助10
8秒前
Ray完成签到,获得积分10
9秒前
yukiseto完成签到 ,获得积分10
9秒前
caozhi完成签到,获得积分10
9秒前
有魅力的发卡完成签到,获得积分10
10秒前
包容的若风完成签到,获得积分10
10秒前
szxnb666完成签到,获得积分20
11秒前
开心薯片完成签到,获得积分10
11秒前
HHH完成签到,获得积分10
12秒前
黑黑黑完成签到,获得积分10
13秒前
Kelly1426完成签到,获得积分10
14秒前
海边的曼彻斯特完成签到 ,获得积分10
14秒前
turbohero完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
英俊的铭应助开心薯片采纳,获得10
15秒前
16秒前
八月宁静完成签到,获得积分10
17秒前
小曾完成签到,获得积分10
17秒前
zyf完成签到,获得积分10
18秒前
高山流水完成签到,获得积分10
18秒前
咎淇完成签到,获得积分10
18秒前
kilig完成签到 ,获得积分10
19秒前
顾矜应助烊烊采纳,获得10
19秒前
平平无奇打工人完成签到 ,获得积分10
22秒前
Young完成签到 ,获得积分10
23秒前
陳某完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022