Domain Adaptive Cross Reconstruction for Change Detection of Heterogeneous Remote Sensing Images via a Feedback Guidance Mechanism

变更检测 计算机科学 合成孔径雷达 人工智能 计算机视觉 目标检测 遥感 翻译(生物学) 图像配准 领域(数学分析) 图像(数学) 模式识别(心理学) 地质学 生物化学 化学 信使核糖核酸 基因 数学分析 数学
作者
Qiang Liu,Kai Ren,Xiangchao Meng,Feng Shao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:6
标识
DOI:10.1109/tgrs.2023.3320805
摘要

Change detection on heterogeneous optical and synthetic aperture radar (SAR) images is soaring and plays a crucial role in monitoring land cover changes, such as disaster emergencies and natural resource monitoring. This is commonly recognized as a promising but challenging work due to the intrinsic differences in imaging mechanisms between the optical and SAR images. Recently, deep learning-based change detection methods based on two-step processing have attracted attention, i.e., first image translation between optical and SAR images to alleviate their modality differences and then change detection based on the translated images. However, image translation itself is a trouble task for the heterogeneous optical and SAR images. The unreliable image translation results further limit the accuracy of change detection. In this paper, to mitigate this problem, we propose a change detection model on domain adaptation by novelty integrating change detection and image reconstruction into a unified framework. Specifically, we first transform the optical and SAR images into an intermediate common domain for comparison. Moreover, cross reconstruction for optical and SAR images is designed to maintain the characteristics of the images and improve the performance of domain adaptation. In addition, a feedback guidance mechanism is circumspectly designed to co-optimize change detection and image reconstruction tasks. Extensive experiments were conducted on four publicly available datasets, the results demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iufan发布了新的文献求助10
1秒前
慕青应助Sun采纳,获得10
1秒前
godgyw完成签到 ,获得积分10
1秒前
JCX发布了新的文献求助10
1秒前
2秒前
min发布了新的文献求助10
2秒前
3秒前
笑点低的小天鹅完成签到,获得积分10
4秒前
外向芝完成签到,获得积分10
4秒前
WangZD完成签到,获得积分10
4秒前
med1640完成签到,获得积分10
4秒前
香蕉觅云应助jessie采纳,获得10
5秒前
科目三应助choi采纳,获得10
6秒前
7秒前
Kelly1426完成签到,获得积分10
9秒前
小鱼儿发布了新的文献求助10
9秒前
Wang完成签到 ,获得积分10
10秒前
WangZD发布了新的文献求助30
10秒前
wwww发布了新的文献求助10
10秒前
iufan发布了新的文献求助10
10秒前
min完成签到,获得积分10
11秒前
在水一方应助LepR采纳,获得30
11秒前
11秒前
紫易发布了新的文献求助10
11秒前
11秒前
乐乐应助虚心的幻翠采纳,获得10
12秒前
在水一方应助skyinner采纳,获得10
12秒前
12秒前
可爱的完成签到,获得积分10
13秒前
我是老大应助王博洋采纳,获得10
13秒前
桐桐应助1112采纳,获得10
13秒前
18922406869完成签到,获得积分20
13秒前
14秒前
15秒前
Zzzhuan完成签到,获得积分20
15秒前
15秒前
JCX完成签到,获得积分20
15秒前
sky123发布了新的文献求助10
16秒前
LHD发布了新的文献求助10
16秒前
geogydeniel完成签到 ,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825