Domain Adaptive Cross Reconstruction for Change Detection of Heterogeneous Remote Sensing Images via a Feedback Guidance Mechanism

变更检测 计算机科学 合成孔径雷达 人工智能 计算机视觉 目标检测 遥感 翻译(生物学) 图像配准 领域(数学分析) 图像(数学) 模式识别(心理学) 数学分析 地质学 信使核糖核酸 基因 化学 生物化学 数学
作者
Qiang Liu,Kai Ren,Xiangchao Meng,Feng Shao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:12
标识
DOI:10.1109/tgrs.2023.3320805
摘要

Change detection on heterogeneous optical and synthetic aperture radar (SAR) images is soaring and plays a crucial role in monitoring land cover changes, such as disaster emergencies and natural resource monitoring. This is commonly recognized as a promising but challenging work due to the intrinsic differences in imaging mechanisms between the optical and SAR images. Recently, deep learning-based change detection methods based on two-step processing have attracted attention, i.e., first image translation between optical and SAR images to alleviate their modality differences and then change detection based on the translated images. However, image translation itself is a trouble task for the heterogeneous optical and SAR images. The unreliable image translation results further limit the accuracy of change detection. In this paper, to mitigate this problem, we propose a change detection model on domain adaptation by novelty integrating change detection and image reconstruction into a unified framework. Specifically, we first transform the optical and SAR images into an intermediate common domain for comparison. Moreover, cross reconstruction for optical and SAR images is designed to maintain the characteristics of the images and improve the performance of domain adaptation. In addition, a feedback guidance mechanism is circumspectly designed to co-optimize change detection and image reconstruction tasks. Extensive experiments were conducted on four publicly available datasets, the results demonstrate the effectiveness of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orange完成签到,获得积分10
刚刚
田様应助楷沅采纳,获得10
1秒前
2秒前
lixx完成签到,获得积分10
2秒前
李健的小迷弟应助KerwinYang采纳,获得10
2秒前
研友_n0kqxL发布了新的文献求助50
2秒前
糖果色的夏季完成签到,获得积分10
2秒前
单纯易真发布了新的文献求助10
2秒前
3秒前
3秒前
Sweet完成签到 ,获得积分10
4秒前
4秒前
NexusExplorer应助科研大捞采纳,获得10
4秒前
5秒前
www发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
Jasper应助东方向露采纳,获得30
6秒前
6秒前
彭于晏应助luochunsheng采纳,获得10
7秒前
longer发布了新的文献求助10
8秒前
9秒前
南风未起发布了新的文献求助10
9秒前
英姑应助优美紫槐采纳,获得10
9秒前
哭泣又柔发布了新的文献求助10
9秒前
10秒前
LG发布了新的文献求助10
10秒前
梦想成为高知悍妇完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
浪子应助火星上送终采纳,获得10
14秒前
16秒前
16秒前
失眠的契完成签到,获得积分10
17秒前
17秒前
17秒前
英俊的铭应助南风未起采纳,获得10
18秒前
Youlu发布了新的文献求助10
20秒前
哭泣又柔完成签到,获得积分10
21秒前
Miss-Li完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720530
求助须知:如何正确求助?哪些是违规求助? 5260834
关于积分的说明 15291524
捐赠科研通 4869955
什么是DOI,文献DOI怎么找? 2615129
邀请新用户注册赠送积分活动 1565084
关于科研通互助平台的介绍 1522191