Domain Adaptive Cross Reconstruction for Change Detection of Heterogeneous Remote Sensing Images via a Feedback Guidance Mechanism

变更检测 计算机科学 合成孔径雷达 人工智能 计算机视觉 目标检测 遥感 翻译(生物学) 图像配准 领域(数学分析) 图像(数学) 模式识别(心理学) 地质学 生物化学 化学 信使核糖核酸 基因 数学分析 数学
作者
Qiang Liu,Kai Ren,Xiangchao Meng,Feng Shao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:6
标识
DOI:10.1109/tgrs.2023.3320805
摘要

Change detection on heterogeneous optical and synthetic aperture radar (SAR) images is soaring and plays a crucial role in monitoring land cover changes, such as disaster emergencies and natural resource monitoring. This is commonly recognized as a promising but challenging work due to the intrinsic differences in imaging mechanisms between the optical and SAR images. Recently, deep learning-based change detection methods based on two-step processing have attracted attention, i.e., first image translation between optical and SAR images to alleviate their modality differences and then change detection based on the translated images. However, image translation itself is a trouble task for the heterogeneous optical and SAR images. The unreliable image translation results further limit the accuracy of change detection. In this paper, to mitigate this problem, we propose a change detection model on domain adaptation by novelty integrating change detection and image reconstruction into a unified framework. Specifically, we first transform the optical and SAR images into an intermediate common domain for comparison. Moreover, cross reconstruction for optical and SAR images is designed to maintain the characteristics of the images and improve the performance of domain adaptation. In addition, a feedback guidance mechanism is circumspectly designed to co-optimize change detection and image reconstruction tasks. Extensive experiments were conducted on four publicly available datasets, the results demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blebui应助姜茶采纳,获得10
刚刚
幼稚园小新完成签到,获得积分10
刚刚
123完成签到,获得积分10
刚刚
1秒前
snowball完成签到,获得积分10
1秒前
2秒前
duoduozs发布了新的文献求助10
2秒前
velpro完成签到,获得积分10
2秒前
qqqq完成签到,获得积分10
2秒前
3秒前
3秒前
溪风完成签到,获得积分10
3秒前
ting发布了新的文献求助10
4秒前
5秒前
Xxxnnian发布了新的文献求助30
5秒前
听风暖完成签到 ,获得积分10
6秒前
li发布了新的文献求助10
6秒前
赘婿应助伊布采纳,获得10
6秒前
gaga完成签到,获得积分10
6秒前
小蘑菇应助reck采纳,获得10
7秒前
清风荷影完成签到 ,获得积分10
7秒前
酷波er应助动如脱兔采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
圈圈发布了新的文献求助10
9秒前
易达发布了新的文献求助10
9秒前
追梦人完成签到,获得积分10
9秒前
9秒前
实验室扛把子完成签到,获得积分10
9秒前
在水一方应助清爽忆山采纳,获得10
10秒前
小马甲应助日月山河永在采纳,获得10
10秒前
娃娃发布了新的文献求助10
11秒前
11秒前
任医生发布了新的文献求助10
11秒前
冷眼观潮完成签到,获得积分10
11秒前
11秒前
守约发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672