亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DGSCR: Double-Target Gesture Separation and Classification Recognition Based on Deep Learning and Millimeter-Wave Radar

手势 手势识别 计算机科学 人工智能 卷积神经网络 计算机视觉 模式识别(心理学) 极高频率 深度学习 语音识别 电信
作者
Haibo Zhao,Yongtao Ma,Yiwei Lu,Kaihua Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (21): 26701-26711
标识
DOI:10.1109/jsen.2023.3319339
摘要

In the field of human–computer interaction, millimeter-wave radar has attracted considerable attention as a contactless and private approach to hand gesture recognition. However, single-target gesture recognition scenes are generally simplistic and not representative of real human–computer interactions. Therefore, this research examines the feasibility of using a single millimeter-wave radar to recognize hand gestures in double-target scenes by combining radar theory with deep learning. First, a dynamic range angle image (DRAI) of the double-target gesture is composed using the weights and DRAIs of two single-target gestures. Thus, a gesture separation network is studied to separate double-target gestures into two single-target gestures. Then, a convolutional neural network and long short-term memory (CNN + LSTM) model is applied to classification recognition. Finally, experiments are conducted to show that the proposed double-target gesture separation and classification recognition (DGSCR) system has a high recognition accuracy for gestures in new environments and positions. The viability of this method is verified using a public dataset. The CNN + LSTM model is validated using test set, which shows that the maximum accuracy across different positions is 99%. Moreover, the average accuracy after separation across the different environments for two targets in staggered arrangements is 93%. Furthermore, when facing unknown gestures in all samples with double targets, the gesture separation network also has good adaptability, with an average accuracy of 81.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
张子捷应助吴亦凡女朋友采纳,获得10
14秒前
21秒前
41秒前
犹豫芝麻应助偶尔打嗝儿采纳,获得10
42秒前
58秒前
Serendiply完成签到,获得积分10
58秒前
uikymh完成签到 ,获得积分0
1分钟前
jjjjjjjjjjj发布了新的文献求助10
1分钟前
1分钟前
1分钟前
乐多完成签到,获得积分10
1分钟前
852应助泡面小猪采纳,获得30
1分钟前
2分钟前
泡面小猪发布了新的文献求助30
2分钟前
2分钟前
2分钟前
凩飒完成签到,获得积分0
2分钟前
ZYN完成签到,获得积分10
2分钟前
舒适初晴完成签到 ,获得积分10
3分钟前
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
小卒完成签到,获得积分10
3分钟前
科研通AI2S应助morena采纳,获得10
3分钟前
wanci应助老白非采纳,获得10
4分钟前
段誉完成签到 ,获得积分10
4分钟前
4分钟前
这个手刹不太灵完成签到 ,获得积分10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
5分钟前
老白非发布了新的文献求助10
5分钟前
5分钟前
cece发布了新的文献求助10
5分钟前
cece完成签到,获得积分10
5分钟前
6分钟前
活泼的熊猫完成签到,获得积分20
6分钟前
无情的瑾瑜完成签到 ,获得积分10
6分钟前
7分钟前
田様应助科研通管家采纳,获得10
7分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813328
关于积分的说明 7899645
捐赠科研通 2472791
什么是DOI,文献DOI怎么找? 1316517
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142