核酸酶
化学
DNA
生物传感器
滚动圆复制
多路复用
计算生物学
DNA纳米技术
纳米技术
组合化学
生物系统
聚合酶
遗传学
生物化学
生物
材料科学
作者
Guohui Xue,Yinghao Cheng,Huo Xu,Chang Xue
标识
DOI:10.1021/acs.analchem.3c01863
摘要
DNA nanotechnology has shown great promise for biosensing and molecular recognition. However, the practical application of conventional DNA biosensors is constrained by inadequate target stimuli, intricate design schemes, multicomponent systems, and susceptibility to nuclease degradation. To overcome these limitations, we present a class of starlike branched and multiplex embedded system (SBES) with an integrated functional design and cascade exponential amplification for serum microRNA (miRNA) detection. The DNA arms can be integrated into an all-in-one system by surrounding a branch point, with each arm endowed with specific functionalities by embedding different DNA fragments. These fragments include a segment complementary to the target miRNA for the recognition element, palindromic tails for self-primed polymerization, and a region with the same sequences as the target serving as the target analogue. Upon exposure to a target miRNA, the DNA arms unwind in a stepwise manner through palindrome-mediated dimerization and polymerization. This enables target recycling for subsequent reactions while releasing the target analogue to generate a secondary response in a feedback manner. A comparative analysis illustrates that the signal-to-noise ratio (SNR) of a full SBES with a feedback strategy is approximately 250% higher than the system without a feedback design. We demonstrate that the four-arm 4pSBES has the benefits of multifunctional integration, enhanced sensitivity, and low false-positive signals, which makes this approach ideally suited for clinical diagnosis. Moreover, an upgraded SBES with additional DNA arms (e.g., 6pSBES) can be constructed to allow multifunctional extension, offering unprecedented opportunities to build versatile DNA nanostructures for biosensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI