亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ductile deformation and subsurface damage evolution mechanism of silicon wafer induced by ultra-precision grinding process

材料科学 薄脆饼 研磨 复合材料 磨料 钻石 光电子学
作者
Hongfei Tao,Yuanhang Liu,Dewen Zhao,Xinchun Lu
出处
期刊:Tribology International [Elsevier BV]
卷期号:189: 108879-108879 被引量:12
标识
DOI:10.1016/j.triboint.2023.108879
摘要

In the field of advanced packaging, large-size silicon wafers are usually thinned by ultra-precision grinding technology relying on the process of workpiece self-rotation. However, the damage caused by mechanical material removal deteriorates the wafer surface flatness and die strength, while its atomic-scale formation principle has yet to be revealed. This work explores the ductile deformation and subsurface damage evolution mechanism of silicon wafer during the ultra-precision grinding process. Some grinding tests are first conducted using different diamond wheels. The surface topography and energy dispersive spectroscopy (EDS) mapping of ground wafers are measured by scanning electron microscope (SEM). The phase transition properties of the ground silicon wafer are confirmed via Raman spectrum. Next, the specimen of groove cross-section is fabricated and its morphology is examined via transmission electron microscopy (TEM) to analyze the subsurface damage characteristics. The subsurface defects at the atomic scale, involving amorphous layer, dislocations, stacking faults and lattice distortions, are observed. Due to its controllable load and similarity of the cutting motion, nanoscratch is utilized for investigating the influence of abrasive interactions on subsurface deformation during the grinding process. Thus, a series of multiple nanoscratch tests are performed in both varied and constant force modes. The material removal behaviors under different scratching conditions are illustrated. This work provides a fundamental understanding of developing a high-efficiency and low-damage thinning method for 12-inch silicon wafers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米其林发布了新的文献求助30
1秒前
3秒前
KON完成签到,获得积分10
5秒前
8秒前
黎明完成签到,获得积分10
12秒前
零_完成签到,获得积分10
13秒前
负责代珊完成签到,获得积分10
14秒前
SciGPT应助123采纳,获得10
14秒前
14秒前
黎明发布了新的文献求助10
16秒前
研友_VZG7GZ应助怦然心动采纳,获得10
17秒前
领导范儿应助王老裂采纳,获得80
18秒前
20秒前
brwen完成签到,获得积分10
23秒前
dax大雄完成签到 ,获得积分10
27秒前
30秒前
32秒前
33秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得30
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
田様应助科研通管家采纳,获得10
34秒前
ding应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
Hello应助科研通管家采纳,获得10
34秒前
ZZZ完成签到,获得积分10
37秒前
羊羊羊发布了新的文献求助10
37秒前
歪歪吸发布了新的文献求助10
37秒前
38秒前
xiaokun发布了新的文献求助10
38秒前
123发布了新的文献求助10
38秒前
王老裂发布了新的文献求助80
43秒前
歪歪吸完成签到,获得积分10
44秒前
北一君完成签到,获得积分10
44秒前
何靖馥琳完成签到,获得积分10
49秒前
丘比特应助库里强采纳,获得10
51秒前
LJL完成签到 ,获得积分10
55秒前
yong完成签到 ,获得积分10
1分钟前
1分钟前
852应助赫贞采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147