Ductile deformation and subsurface damage evolution mechanism of silicon wafer induced by ultra-precision grinding process

材料科学 薄脆饼 研磨 复合材料 磨料 钻石 光电子学
作者
Hongfei Tao,Yuanhang Liu,Dewen Zhao,Xinchun Lu
出处
期刊:Tribology International [Elsevier]
卷期号:189: 108879-108879 被引量:12
标识
DOI:10.1016/j.triboint.2023.108879
摘要

In the field of advanced packaging, large-size silicon wafers are usually thinned by ultra-precision grinding technology relying on the process of workpiece self-rotation. However, the damage caused by mechanical material removal deteriorates the wafer surface flatness and die strength, while its atomic-scale formation principle has yet to be revealed. This work explores the ductile deformation and subsurface damage evolution mechanism of silicon wafer during the ultra-precision grinding process. Some grinding tests are first conducted using different diamond wheels. The surface topography and energy dispersive spectroscopy (EDS) mapping of ground wafers are measured by scanning electron microscope (SEM). The phase transition properties of the ground silicon wafer are confirmed via Raman spectrum. Next, the specimen of groove cross-section is fabricated and its morphology is examined via transmission electron microscopy (TEM) to analyze the subsurface damage characteristics. The subsurface defects at the atomic scale, involving amorphous layer, dislocations, stacking faults and lattice distortions, are observed. Due to its controllable load and similarity of the cutting motion, nanoscratch is utilized for investigating the influence of abrasive interactions on subsurface deformation during the grinding process. Thus, a series of multiple nanoscratch tests are performed in both varied and constant force modes. The material removal behaviors under different scratching conditions are illustrated. This work provides a fundamental understanding of developing a high-efficiency and low-damage thinning method for 12-inch silicon wafers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xixi完成签到,获得积分20
1秒前
tiger发布了新的文献求助10
1秒前
冰_完成签到 ,获得积分10
2秒前
顾矜应助mary611采纳,获得10
4秒前
DaisyRong完成签到,获得积分10
4秒前
5秒前
小二郎应助彩色行天采纳,获得200
5秒前
6秒前
爱吃饼干的土拨鼠完成签到,获得积分10
8秒前
科研小白兔完成签到,获得积分10
9秒前
tiezhu完成签到,获得积分10
9秒前
ferritin完成签到 ,获得积分10
9秒前
汪汪完成签到,获得积分10
9秒前
10秒前
YJ888发布了新的文献求助10
10秒前
枫叶随想完成签到,获得积分10
10秒前
zmy关闭了zmy文献求助
14秒前
fengzi151完成签到 ,获得积分10
14秒前
烟花应助唠叨的冥王星采纳,获得10
14秒前
airwing完成签到,获得积分10
15秒前
16秒前
19秒前
tiezhu发布了新的文献求助10
19秒前
啊盘发布了新的文献求助10
20秒前
FashionBoy应助李微采纳,获得30
20秒前
20秒前
lmc完成签到,获得积分10
20秒前
负责的问寒完成签到,获得积分10
21秒前
taysun完成签到 ,获得积分10
22秒前
上官若男应助YJ888采纳,获得10
22秒前
秦小荷发布了新的文献求助10
23秒前
23秒前
24秒前
KK完成签到,获得积分10
24秒前
夏小舟发布了新的文献求助10
24秒前
1234发布了新的文献求助10
28秒前
酷波er应助秦小荷采纳,获得10
28秒前
28秒前
万能图书馆应助进口小宵采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299249
求助须知:如何正确求助?哪些是违规求助? 4447475
关于积分的说明 13842802
捐赠科研通 4333098
什么是DOI,文献DOI怎么找? 2378518
邀请新用户注册赠送积分活动 1373819
关于科研通互助平台的介绍 1339343