Imbalanced least squares regression with adaptive weight learning

判别式 计算机科学 人工智能 趋同(经济学) 班级(哲学) 放松(心理学) 基质(化学分析) 二进制数 约束(计算机辅助设计) 机器学习 变换矩阵 模式识别(心理学) 数学优化 数学 心理学 社会心理学 材料科学 几何学 算术 运动学 物理 经典力学 经济 复合材料 经济增长
作者
Yanting Li,Junwei Jin,Jiangtao Ma,Fubao Zhu,Baohua Jin,Jing Liang,C. L. Philip Chen
出处
期刊:Information Sciences [Elsevier BV]
卷期号:648: 119541-119541 被引量:29
标识
DOI:10.1016/j.ins.2023.119541
摘要

Least squares regression (LSR) has demonstrated promising performance in various classification tasks owing to its effectiveness and efficiency. However, there are some deficiencies that seriously hinder its application in imbalanced data scenarios. The first is that LSR strongly relies on a balanced class distribution. A severely imbalanced class distribution may seriously damage the effectiveness of the algorithm. Second, the utilized binary label matrix in the conventional LSR model may be too strict to learn a discriminative transformation matrix for imbalanced learning. To address the above issues, in this paper, an adaptive weight learning mechanism and label relaxation constraint are proposed and incorporated into the framework of LSR to tackle the imbalanced classification problem. The weight of each sample can be adaptively obtained according to the original distribution information of the imbalanced data, in which the importance of minority class samples can be better reflected with larger weights. A new label relaxation matrix consisting of the original label matrix and auxiliary matrix is constructed to widen the margins between different classes. Further, we provide an iterative algorithm with fast convergence to solve the resulting optimization problem. Extensive experimental results on diverse binary-class and multi-class imbalanced datasets show that the proposed method outperforms many other state-of-the-art imbalanced learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lruen7发布了新的文献求助10
2秒前
pipizhu完成签到,获得积分10
3秒前
酷波er应助flymove采纳,获得10
4秒前
果实发布了新的文献求助30
5秒前
Yangyujie发布了新的文献求助10
6秒前
李爱国应助刘玲采纳,获得10
6秒前
7秒前
7秒前
无花果应助乐观碧彤采纳,获得10
8秒前
自信南霜完成签到 ,获得积分10
10秒前
我的miemie应助dis采纳,获得50
13秒前
13秒前
14秒前
功夫小猫发布了新的文献求助10
14秒前
15秒前
16秒前
echo111完成签到,获得积分10
17秒前
小杰完成签到 ,获得积分10
19秒前
善学以致用应助Jenny采纳,获得10
19秒前
乐观碧彤发布了新的文献求助10
19秒前
flymove发布了新的文献求助10
19秒前
刘玲发布了新的文献求助10
20秒前
yao完成签到,获得积分10
21秒前
蓝天0812完成签到,获得积分10
21秒前
fall发布了新的文献求助10
21秒前
Felice完成签到,获得积分10
22秒前
温暖的钻石完成签到,获得积分10
23秒前
midokaori发布了新的文献求助10
23秒前
卜大大发布了新的文献求助10
23秒前
23秒前
丘比特应助帮帮我采纳,获得10
23秒前
bianco2007完成签到,获得积分20
24秒前
25秒前
乐观碧彤完成签到,获得积分10
25秒前
26秒前
山乞凡完成签到 ,获得积分10
27秒前
linkman发布了新的文献求助10
29秒前
29秒前
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149