Imbalanced least squares regression with adaptive weight learning

判别式 计算机科学 人工智能 趋同(经济学) 班级(哲学) 放松(心理学) 基质(化学分析) 二进制数 约束(计算机辅助设计) 机器学习 变换矩阵 模式识别(心理学) 数学优化 数学 心理学 社会心理学 材料科学 几何学 算术 运动学 物理 经典力学 经济 复合材料 经济增长
作者
Yanting Li,Junwei Jin,Jiangtao Ma,Fubao Zhu,Baohua Jin,Jing Liang,C. L. Philip Chen
出处
期刊:Information Sciences [Elsevier]
卷期号:648: 119541-119541 被引量:29
标识
DOI:10.1016/j.ins.2023.119541
摘要

Least squares regression (LSR) has demonstrated promising performance in various classification tasks owing to its effectiveness and efficiency. However, there are some deficiencies that seriously hinder its application in imbalanced data scenarios. The first is that LSR strongly relies on a balanced class distribution. A severely imbalanced class distribution may seriously damage the effectiveness of the algorithm. Second, the utilized binary label matrix in the conventional LSR model may be too strict to learn a discriminative transformation matrix for imbalanced learning. To address the above issues, in this paper, an adaptive weight learning mechanism and label relaxation constraint are proposed and incorporated into the framework of LSR to tackle the imbalanced classification problem. The weight of each sample can be adaptively obtained according to the original distribution information of the imbalanced data, in which the importance of minority class samples can be better reflected with larger weights. A new label relaxation matrix consisting of the original label matrix and auxiliary matrix is constructed to widen the margins between different classes. Further, we provide an iterative algorithm with fast convergence to solve the resulting optimization problem. Extensive experimental results on diverse binary-class and multi-class imbalanced datasets show that the proposed method outperforms many other state-of-the-art imbalanced learning approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张玮完成签到,获得积分20
4秒前
科研通AI6应助zhoumaoyuan采纳,获得10
5秒前
科研通AI6应助zhoumaoyuan采纳,获得10
5秒前
刻苦的元风完成签到,获得积分10
7秒前
8秒前
幽默滑板完成签到 ,获得积分10
11秒前
kei完成签到,获得积分10
13秒前
John_sdu完成签到,获得积分10
13秒前
14秒前
15秒前
寻道图强应助kingwill采纳,获得50
16秒前
ding应助张玮采纳,获得10
17秒前
花莫凋零发布了新的文献求助10
20秒前
22秒前
JJJ发布了新的文献求助30
23秒前
虚幻人完成签到,获得积分10
24秒前
面团应助东方越彬采纳,获得10
24秒前
从容的丹南完成签到 ,获得积分10
24秒前
27秒前
泡芙发布了新的文献求助10
33秒前
mouhe完成签到,获得积分10
34秒前
Elthrai完成签到 ,获得积分10
36秒前
Ava应助渔婆采纳,获得10
36秒前
李健应助然12138采纳,获得10
37秒前
39秒前
39秒前
禾页完成签到 ,获得积分10
39秒前
40秒前
41秒前
hlq完成签到 ,获得积分10
43秒前
研友_VZG7GZ应助胡图图采纳,获得10
43秒前
ZeZeZe发布了新的文献求助10
45秒前
45秒前
echo发布了新的文献求助10
46秒前
46秒前
安风完成签到 ,获得积分10
47秒前
挡挡完成签到,获得积分20
47秒前
48秒前
51秒前
瘦瘦白薇完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566