Spatial prediction of groundwater level change based on the Third Law of Geography

样品(材料) 气候变化 推论 相似性(几何) 协变量 地理 数据挖掘 地下水 采样(信号处理) 计算机科学 计量经济学 统计 数学 人工智能 机器学习 地质学 化学 岩土工程 色谱法 图像(数学) 海洋学 滤波器(信号处理) 计算机视觉
作者
Fang-He Zhao,Jingyi Huang,A‐Xing Zhu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:37 (10): 2129-2149 被引量:10
标识
DOI:10.1080/13658816.2023.2248215
摘要

AbstractSpatial prediction methods are an important means of predicting the spatial variation of groundwater level change. Existing methods extract spatial or statistical relationships from samples to represent the study area for inference and require a representative sample set that is usually in large quantity and is distributed across geographic or covariate space. However, samples for groundwater are usually sparsely and unevenly distributed. In this paper, an approach based on the Third Law of Geography is proposed to make predictions by comparing the similarity between each individual sample and unmeasured site. The approach requires no specific number or distribution of samples and provides individual uncertainty measures at each location. Experiments in three different watersheds across the U.S. show that the proposed methods outperform machine learning methods when available samples do not well represent the area. The provided uncertainty measures are indicative of prediction accuracy by location. The results of this study also show that the spatial prediction based on the Third Law of Geography can also be successfully applied to dynamic variables such as groundwater level change.Keywords: Spatial predictionthe Third Law of Geographymachine learninggroundwater level change Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementThe data that support the findings of this study are available at https://doi.org/10.17605/OSF.IO/6ZU4T. These data were derived from the following resources available in the public domain: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958 to 2015 (https://www.climatologylab.org/terraclimate.html); ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate (https://cds.climate.copernicus.eu/cdsapp#!/home); Data from: Soil Properties and Class 100 m Grids United States (https://doi.org/10.18113/S1KW2H); National Water Information System data available on the World Wide Web (http://waterdata.usgs.gov/nwis/); 1 Arc-second Digital Elevation Models (DEMs) (https://www.sciencebase.gov/catalog/item/4f70aa71e4b058caae3f8de1).Additional informationFundingThe work reported here was supported by grants from National Natural Science Foundation of China [41871300], the China Scholarship Council [201904910630], and the 111 Program of China [D19002]. Supports to A-Xing Zhu through the Vilas Associate Award, the Hammel Faculty Fellow Award, and the Manasse Chair Professorship from the University of Wisconsin-Madison are greatly appreciated.Notes on contributorsFang-He ZhaoFang-He Zhao is currently a PhD candidate at the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. Her research is focused on the spatial prediction of geographic variables and the intelligent realization of spatial prediction. She contributed to data collection, experiment design and conduction, and manuscript writing and revision of this paper.Jingyi HuangJingyi Huang is currently an Assistant Professor at the Department of Soil Science, University of Wisconsin-Madison. His research interests include remote sensing and proximal sensing of soil, digital soil mapping, soil physics, and soil-vegetation-atmosphere interaction. He contributed to the conceptualization, data collection, and manuscript writing of the paper.A-Xing ZhuA-Xing Zhu is a Professor at the Department of Geography, University of Wisconsin-Madison, and an adjunct professor at Nanjing Normal University. His current research interest is the development of the Third Law of Geography and its application in geographic analysis. In this study, he planned and supervised the project, and contributed to manuscript writing and revision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tannie完成签到 ,获得积分10
1秒前
fawr完成签到 ,获得积分10
3秒前
朱婷完成签到 ,获得积分10
3秒前
10秒前
谨慎问雁发布了新的文献求助10
15秒前
GingerF应助Yuanyuan采纳,获得60
17秒前
吉吉完成签到,获得积分10
17秒前
fdpb完成签到,获得积分10
17秒前
迈克老狼完成签到 ,获得积分10
19秒前
科研通AI5应助谨慎问雁采纳,获得10
20秒前
凡凡完成签到,获得积分10
25秒前
Aiden完成签到 ,获得积分10
26秒前
Akim应助fishhh采纳,获得10
28秒前
无幻完成签到 ,获得积分10
31秒前
青黛完成签到 ,获得积分10
33秒前
zjzjzjzjzj完成签到 ,获得积分10
39秒前
牛黄完成签到 ,获得积分10
44秒前
HONG完成签到 ,获得积分10
45秒前
ppapp完成签到 ,获得积分10
54秒前
55秒前
量子星尘发布了新的文献求助10
55秒前
Kkkk完成签到 ,获得积分10
57秒前
wuyyuan完成签到 ,获得积分10
57秒前
czj完成签到 ,获得积分10
59秒前
WILD完成签到 ,获得积分10
1分钟前
别闹闹完成签到 ,获得积分10
1分钟前
sean完成签到 ,获得积分10
1分钟前
lingyu完成签到,获得积分10
1分钟前
温暖的夏岚完成签到 ,获得积分10
1分钟前
青雾雨完成签到,获得积分10
1分钟前
缓慢的甜瓜完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
周三完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得50
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
李思雨完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901311
求助须知:如何正确求助?哪些是违规求助? 4180792
关于积分的说明 12977324
捐赠科研通 3945701
什么是DOI,文献DOI怎么找? 2164278
邀请新用户注册赠送积分活动 1182585
关于科研通互助平台的介绍 1088973