已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial prediction of groundwater level change based on the Third Law of Geography

样品(材料) 气候变化 推论 相似性(几何) 协变量 地理 数据挖掘 地下水 采样(信号处理) 计算机科学 计量经济学 统计 数学 人工智能 机器学习 地质学 化学 岩土工程 色谱法 图像(数学) 海洋学 滤波器(信号处理) 计算机视觉
作者
Fang-He Zhao,Jingyi Huang,A‐Xing Zhu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:37 (10): 2129-2149 被引量:10
标识
DOI:10.1080/13658816.2023.2248215
摘要

AbstractSpatial prediction methods are an important means of predicting the spatial variation of groundwater level change. Existing methods extract spatial or statistical relationships from samples to represent the study area for inference and require a representative sample set that is usually in large quantity and is distributed across geographic or covariate space. However, samples for groundwater are usually sparsely and unevenly distributed. In this paper, an approach based on the Third Law of Geography is proposed to make predictions by comparing the similarity between each individual sample and unmeasured site. The approach requires no specific number or distribution of samples and provides individual uncertainty measures at each location. Experiments in three different watersheds across the U.S. show that the proposed methods outperform machine learning methods when available samples do not well represent the area. The provided uncertainty measures are indicative of prediction accuracy by location. The results of this study also show that the spatial prediction based on the Third Law of Geography can also be successfully applied to dynamic variables such as groundwater level change.Keywords: Spatial predictionthe Third Law of Geographymachine learninggroundwater level change Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementThe data that support the findings of this study are available at https://doi.org/10.17605/OSF.IO/6ZU4T. These data were derived from the following resources available in the public domain: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958 to 2015 (https://www.climatologylab.org/terraclimate.html); ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate (https://cds.climate.copernicus.eu/cdsapp#!/home); Data from: Soil Properties and Class 100 m Grids United States (https://doi.org/10.18113/S1KW2H); National Water Information System data available on the World Wide Web (http://waterdata.usgs.gov/nwis/); 1 Arc-second Digital Elevation Models (DEMs) (https://www.sciencebase.gov/catalog/item/4f70aa71e4b058caae3f8de1).Additional informationFundingThe work reported here was supported by grants from National Natural Science Foundation of China [41871300], the China Scholarship Council [201904910630], and the 111 Program of China [D19002]. Supports to A-Xing Zhu through the Vilas Associate Award, the Hammel Faculty Fellow Award, and the Manasse Chair Professorship from the University of Wisconsin-Madison are greatly appreciated.Notes on contributorsFang-He ZhaoFang-He Zhao is currently a PhD candidate at the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. Her research is focused on the spatial prediction of geographic variables and the intelligent realization of spatial prediction. She contributed to data collection, experiment design and conduction, and manuscript writing and revision of this paper.Jingyi HuangJingyi Huang is currently an Assistant Professor at the Department of Soil Science, University of Wisconsin-Madison. His research interests include remote sensing and proximal sensing of soil, digital soil mapping, soil physics, and soil-vegetation-atmosphere interaction. He contributed to the conceptualization, data collection, and manuscript writing of the paper.A-Xing ZhuA-Xing Zhu is a Professor at the Department of Geography, University of Wisconsin-Madison, and an adjunct professor at Nanjing Normal University. His current research interest is the development of the Third Law of Geography and its application in geographic analysis. In this study, he planned and supervised the project, and contributed to manuscript writing and revision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
hrpppp发布了新的文献求助30
2秒前
3秒前
啊的课件教案关注了科研通微信公众号
3秒前
7秒前
浮游应助七七采纳,获得10
8秒前
8秒前
yao关闭了yao文献求助
9秒前
FashionBoy应助anya采纳,获得200
10秒前
11秒前
萝卜青菜完成签到,获得积分10
12秒前
小李子关注了科研通微信公众号
14秒前
保卫时光发布了新的文献求助50
14秒前
眼中星光发布了新的文献求助10
16秒前
16秒前
16秒前
善学以致用应助百浪多息采纳,获得10
17秒前
张达发布了新的文献求助10
17秒前
18秒前
18秒前
捏捏我的小短腿完成签到,获得积分10
20秒前
RDF发布了新的文献求助10
20秒前
21秒前
21秒前
木木夕云发布了新的文献求助10
22秒前
zhizhi完成签到,获得积分20
22秒前
yinjs158发布了新的文献求助10
22秒前
上官若男应助张达采纳,获得10
23秒前
23秒前
24秒前
文静的刺猬完成签到,获得积分20
25秒前
777567发布了新的文献求助10
26秒前
YuuuY发布了新的文献求助10
26秒前
26秒前
27秒前
快乐石头发布了新的文献求助10
27秒前
sweetrumors发布了新的文献求助10
28秒前
wen发布了新的文献求助30
28秒前
柳易槐发布了新的文献求助20
28秒前
小李子发布了新的文献求助10
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209090
求助须知:如何正确求助?哪些是违规求助? 4386405
关于积分的说明 13660783
捐赠科研通 4245503
什么是DOI,文献DOI怎么找? 2329333
邀请新用户注册赠送积分活动 1327184
关于科研通互助平台的介绍 1279467