Multi-level and joint attention networks on brain functional connectivity for cross-cognitive prediction

认知 计算机科学 功能连接 接头(建筑物) 人工智能 共同注意 机器学习 认知心理学 心理学 神经科学 建筑工程 发展心理学 自闭症 工程类
作者
Jing Xia,Nanguang Chen,Anqi Qiu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:90: 102921-102921
标识
DOI:10.1016/j.media.2023.102921
摘要

Deep learning on resting-state functional MRI (rs-fMRI) has shown great success in predicting a single cognition or mental disease. Nevertheless, cognitive functions or mental diseases may share neural mechanisms that can benefit their prediction/classification. We propose a multi-level and joint attention (ML-Joint-Att) network to learn high-order representations of brain functional connectivities that are specific and shared across multiple tasks. We design the ML-Joint-Att network with edge and node convolutional operators, an adaptive inception module, and three attention modules, including network-wise, region-wise, and region-wise joint attention modules. The adaptive inception learns brain functional connectivity at multiple spatial scales. The network-wise and region-wise attention modules take the multi-scale functional connectivities as input and learn features at the network and regional levels for individual tasks. Moreover, the joint attention module is designed as region-wise joint attention to learn shared brain features that contribute to and compensate for the prediction of multiple tasks. We employed the Adolescent Brain Cognitive Development (ABCD) dataset (n =9092) to evaluate the ML-Joint-Att network for the prediction of cognitive flexibility and inhibition. Our experiments demonstrated the usefulness of the three attention modules and identified brain functional connectivities and regions specific and common between cognitive flexibility and inhibition. In particular, the joint attention module can significantly improve the prediction of both cognitive functions. Moreover, leave-one-site cross-validation showed that the ML-Joint-Att network is robust to independent samples obtained from different sites of the ABCD study. Our network outperformed existing machine learning techniques, including Brain Bias Set (BBS), spatio-temporal graph convolution network (ST-GCN), and BrainNetCNN. We demonstrated the generalization of our method to other applications, such as the prediction of fluid intelligence and crystallized intelligence, which also outperformed the ST-GCN and BrainNetCNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科研通AI2S应助Zhong采纳,获得10
1秒前
yidashi完成签到,获得积分10
1秒前
Kelvin.Tsi完成签到 ,获得积分10
1秒前
Island发布了新的文献求助10
2秒前
hu970发布了新的文献求助10
2秒前
九九发布了新的文献求助10
2秒前
123456完成签到,获得积分10
2秒前
BareBear应助龙妍琳采纳,获得10
2秒前
赘婿应助wary采纳,获得10
3秒前
小蘑菇应助wary采纳,获得10
3秒前
上官若男应助wary采纳,获得10
3秒前
李爱国应助木子采纳,获得10
3秒前
烟花应助马佳凯采纳,获得10
3秒前
3秒前
LYL完成签到,获得积分10
4秒前
4秒前
得意凡人完成签到,获得积分10
4秒前
4秒前
害怕的擎宇完成签到,获得积分10
5秒前
柳絮完成签到,获得积分20
5秒前
6秒前
赫连烙发布了新的文献求助10
6秒前
目遇给目遇的求助进行了留言
7秒前
Arnold发布了新的文献求助10
8秒前
在九月完成签到 ,获得积分10
8秒前
selfevidbet发布了新的文献求助30
8秒前
通~发布了新的文献求助10
8秒前
靓仔完成签到,获得积分10
8秒前
妙手回春板蓝根完成签到,获得积分10
8秒前
9秒前
11完成签到,获得积分10
10秒前
1111完成签到,获得积分10
10秒前
777完成签到,获得积分10
11秒前
junzilan发布了新的文献求助10
11秒前
11秒前
sun应助leave采纳,获得20
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762