Multi-level and joint attention networks on brain functional connectivity for cross-cognitive prediction

认知 计算机科学 功能连接 接头(建筑物) 人工智能 共同注意 机器学习 认知心理学 心理学 神经科学 建筑工程 发展心理学 自闭症 工程类
作者
Jing Xia,Nanguang Chen,Anqi Qiu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:90: 102921-102921
标识
DOI:10.1016/j.media.2023.102921
摘要

Deep learning on resting-state functional MRI (rs-fMRI) has shown great success in predicting a single cognition or mental disease. Nevertheless, cognitive functions or mental diseases may share neural mechanisms that can benefit their prediction/classification. We propose a multi-level and joint attention (ML-Joint-Att) network to learn high-order representations of brain functional connectivities that are specific and shared across multiple tasks. We design the ML-Joint-Att network with edge and node convolutional operators, an adaptive inception module, and three attention modules, including network-wise, region-wise, and region-wise joint attention modules. The adaptive inception learns brain functional connectivity at multiple spatial scales. The network-wise and region-wise attention modules take the multi-scale functional connectivities as input and learn features at the network and regional levels for individual tasks. Moreover, the joint attention module is designed as region-wise joint attention to learn shared brain features that contribute to and compensate for the prediction of multiple tasks. We employed the Adolescent Brain Cognitive Development (ABCD) dataset (n =9092) to evaluate the ML-Joint-Att network for the prediction of cognitive flexibility and inhibition. Our experiments demonstrated the usefulness of the three attention modules and identified brain functional connectivities and regions specific and common between cognitive flexibility and inhibition. In particular, the joint attention module can significantly improve the prediction of both cognitive functions. Moreover, leave-one-site cross-validation showed that the ML-Joint-Att network is robust to independent samples obtained from different sites of the ABCD study. Our network outperformed existing machine learning techniques, including Brain Bias Set (BBS), spatio-temporal graph convolution network (ST-GCN), and BrainNetCNN. We demonstrated the generalization of our method to other applications, such as the prediction of fluid intelligence and crystallized intelligence, which also outperformed the ST-GCN and BrainNetCNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa发布了新的文献求助10
1秒前
2秒前
计时器响了完成签到,获得积分10
4秒前
郑嵩完成签到,获得积分10
4秒前
1wcx2发布了新的文献求助10
4秒前
5秒前
大模型应助mm采纳,获得10
6秒前
7秒前
7秒前
小星星完成签到 ,获得积分10
9秒前
dinglingling关注了科研通微信公众号
9秒前
科研圣体完成签到 ,获得积分10
9秒前
毛豆应助xxx采纳,获得10
9秒前
季心安发布了新的文献求助10
10秒前
深情安青应助蟹黄包包采纳,获得10
10秒前
眼睛大的耷完成签到,获得积分10
10秒前
浅尝离白完成签到,获得积分0
11秒前
12秒前
guo发布了新的文献求助10
12秒前
千亦完成签到,获得积分10
12秒前
13秒前
13秒前
冷静冰双完成签到,获得积分20
13秒前
14秒前
今后应助wyr采纳,获得10
14秒前
katrina完成签到 ,获得积分10
15秒前
15秒前
nini完成签到,获得积分10
16秒前
英俊的铭应助yqzl采纳,获得10
17秒前
达落完成签到,获得积分10
17秒前
17秒前
明理听安完成签到,获得积分10
19秒前
叶子小丙发布了新的文献求助10
19秒前
20秒前
冷静的千山完成签到,获得积分10
20秒前
huang完成签到,获得积分20
21秒前
long完成签到 ,获得积分10
23秒前
iperper完成签到,获得积分10
23秒前
健忘书兰完成签到,获得积分10
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308852
求助须知:如何正确求助?哪些是违规求助? 2942301
关于积分的说明 8507956
捐赠科研通 2617252
什么是DOI,文献DOI怎么找? 1430026
科研通“疑难数据库(出版商)”最低求助积分说明 663984
邀请新用户注册赠送积分活动 649215