Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion

生物炭 响应面法 生物能源 中心组合设计 厌氧消化 稻草 热解 均方误差 制浆造纸工业 数学 甲烷 化学 生物燃料 废物管理 工程类 统计 有机化学 无机化学
作者
Yuanhang Zhan,Jun Zhu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:355: 122336-122336 被引量:8
标识
DOI:10.1016/j.apenergy.2023.122336
摘要

Biochar can be used to improve the anaerobic digestion (AD) of agricultural wastes for higher methane production. However, the interaction of biochar addition with other factors of the anaerobic co-digestion (Co-AD) process has rarely been investigated. In this study, process models based on response surface methodology (RSM) and artificial neural network (ANN) were compared in modeling the methane yield (MY, mL CH4/g VS added) from the Co-AD of poultry litter and wheat straw with biochar addition. Box-Behnken design was applied, with the controlling parameters being carbon to nitrogen ratio (C/N), total solids (TS, %), and biochar addition (Biochar, % TS). Numerical optimization and genetic algorithm (GA) were used as optimization tools for RSM and ANN, respectively. A significant second-order quadratic model was built by RSM (R2 = 0.9981 and RMSE = 0.91), which demonstrated significant interactions between C/N and TS (p < 0.0001), and between C/N and Biochar (p < 0.05). The trained ANN (3−3−1) was less accurate (R2 = 0.9926, RMSE = 1.80) compared to RSM. The optimization results by RSM and ANN coupled with GA (ANN-GA) were both validated with prediction errors <0.5%. The optimization results by ANN-GA should be used since it generated a higher maximum MY of 290.7 ± 0.2 mL CH4/g VS added, under the optimal conditions of C/N ratio 24.46, TS 5.03%, and Biochar 8.73% TS, showing an improvement of 20.6% (compared to the control) through process optimization. The methods can also be applied in other scenarios for process modeling and optimization. The optimized results could support real applications of using additives including biochar, active carbon, nanoparticles, etc., to promote the bioenergy production from AD of agricultural wastes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz关闭了zzz文献求助
刚刚
刚刚
1秒前
1秒前
1秒前
JamesPei应助1112678采纳,获得10
1秒前
zjj发布了新的文献求助10
2秒前
Corry完成签到,获得积分10
2秒前
yznfly应助not采纳,获得20
2秒前
搞怪网络发布了新的文献求助20
2秒前
Self完成签到,获得积分10
2秒前
lipeng发布了新的文献求助10
3秒前
小樱发布了新的文献求助10
3秒前
4秒前
22222发布了新的文献求助30
4秒前
4秒前
科研王子发布了新的文献求助10
5秒前
PAPA发布了新的文献求助10
5秒前
tecumseh发布了新的文献求助10
5秒前
搜集达人应助冷酷的可乐采纳,获得10
5秒前
5秒前
Nala完成签到,获得积分10
5秒前
6秒前
哭泣乌发布了新的文献求助10
6秒前
6秒前
z1z1z发布了新的文献求助20
6秒前
大模型应助ZhijunXiang采纳,获得10
6秒前
善良的灵羊完成签到 ,获得积分10
7秒前
zhijianzhe应助喝一碗粥采纳,获得10
7秒前
王淑华发布了新的文献求助10
7秒前
7秒前
8秒前
婷婷发布了新的文献求助40
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
jieyu完成签到 ,获得积分10
9秒前
10秒前
虚幻沛菡发布了新的文献求助10
10秒前
兴奋如松完成签到,获得积分20
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961655
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139004
捐赠科研通 3240407
什么是DOI,文献DOI怎么找? 1790947
邀请新用户注册赠送积分活动 872683
科研通“疑难数据库(出版商)”最低求助积分说明 803306