Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion

生物炭 响应面法 生物能源 中心组合设计 厌氧消化 稻草 热解 均方误差 制浆造纸工业 数学 甲烷 化学 生物燃料 废物管理 工程类 统计 无机化学 有机化学
作者
Yuanhang Zhan,Jun Zhu
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122336-122336 被引量:8
标识
DOI:10.1016/j.apenergy.2023.122336
摘要

Biochar can be used to improve the anaerobic digestion (AD) of agricultural wastes for higher methane production. However, the interaction of biochar addition with other factors of the anaerobic co-digestion (Co-AD) process has rarely been investigated. In this study, process models based on response surface methodology (RSM) and artificial neural network (ANN) were compared in modeling the methane yield (MY, mL CH4/g VS added) from the Co-AD of poultry litter and wheat straw with biochar addition. Box-Behnken design was applied, with the controlling parameters being carbon to nitrogen ratio (C/N), total solids (TS, %), and biochar addition (Biochar, % TS). Numerical optimization and genetic algorithm (GA) were used as optimization tools for RSM and ANN, respectively. A significant second-order quadratic model was built by RSM (R2 = 0.9981 and RMSE = 0.91), which demonstrated significant interactions between C/N and TS (p < 0.0001), and between C/N and Biochar (p < 0.05). The trained ANN (3−3−1) was less accurate (R2 = 0.9926, RMSE = 1.80) compared to RSM. The optimization results by RSM and ANN coupled with GA (ANN-GA) were both validated with prediction errors <0.5%. The optimization results by ANN-GA should be used since it generated a higher maximum MY of 290.7 ± 0.2 mL CH4/g VS added, under the optimal conditions of C/N ratio 24.46, TS 5.03%, and Biochar 8.73% TS, showing an improvement of 20.6% (compared to the control) through process optimization. The methods can also be applied in other scenarios for process modeling and optimization. The optimized results could support real applications of using additives including biochar, active carbon, nanoparticles, etc., to promote the bioenergy production from AD of agricultural wastes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whi完成签到,获得积分20
刚刚
刚刚
aaaa完成签到,获得积分10
1秒前
长安完成签到,获得积分10
1秒前
Silverexile完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助tanjuan采纳,获得10
2秒前
Sschi应助爱笑的雪糕采纳,获得10
2秒前
可怜打工人完成签到,获得积分10
2秒前
asdfghjk完成签到,获得积分10
2秒前
Drink发布了新的文献求助10
3秒前
然ko完成签到,获得积分10
3秒前
cmuren99完成签到,获得积分10
3秒前
IvanLoopy发布了新的文献求助30
4秒前
liangxianli完成签到,获得积分10
4秒前
杨气罐发布了新的文献求助10
4秒前
xl发布了新的文献求助10
4秒前
4秒前
高高梦山完成签到 ,获得积分10
4秒前
Yolanda发布了新的文献求助10
5秒前
5秒前
亚婷儿完成签到,获得积分10
5秒前
moumou完成签到,获得积分10
5秒前
WANGYUANLE完成签到,获得积分10
6秒前
EBA应助久伴久爱采纳,获得10
6秒前
淡然归尘完成签到,获得积分20
7秒前
7秒前
关耳发布了新的文献求助10
7秒前
7秒前
神勇的长颈鹿完成签到 ,获得积分10
8秒前
ccc发布了新的文献求助20
9秒前
10秒前
大方的盼夏完成签到,获得积分20
10秒前
11秒前
经竺应助简一采纳,获得10
11秒前
白瑾发布了新的文献求助10
11秒前
YUUNEEQUE完成签到,获得积分10
12秒前
小杨不吃羊完成签到 ,获得积分10
12秒前
www发布了新的文献求助10
12秒前
麻瓜小羊发布了新的文献求助10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230133
求助须知:如何正确求助?哪些是违规求助? 2877796
关于积分的说明 8201607
捐赠科研通 2545066
什么是DOI,文献DOI怎么找? 1374828
科研通“疑难数据库(出版商)”最低求助积分说明 647143
邀请新用户注册赠送积分活动 621973