Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion

生物炭 响应面法 生物能源 中心组合设计 厌氧消化 稻草 热解 均方误差 制浆造纸工业 数学 甲烷 化学 生物燃料 废物管理 工程类 统计 无机化学 有机化学
作者
Yuanhang Zhan,Jun Zhu
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122336-122336 被引量:8
标识
DOI:10.1016/j.apenergy.2023.122336
摘要

Biochar can be used to improve the anaerobic digestion (AD) of agricultural wastes for higher methane production. However, the interaction of biochar addition with other factors of the anaerobic co-digestion (Co-AD) process has rarely been investigated. In this study, process models based on response surface methodology (RSM) and artificial neural network (ANN) were compared in modeling the methane yield (MY, mL CH4/g VS added) from the Co-AD of poultry litter and wheat straw with biochar addition. Box-Behnken design was applied, with the controlling parameters being carbon to nitrogen ratio (C/N), total solids (TS, %), and biochar addition (Biochar, % TS). Numerical optimization and genetic algorithm (GA) were used as optimization tools for RSM and ANN, respectively. A significant second-order quadratic model was built by RSM (R2 = 0.9981 and RMSE = 0.91), which demonstrated significant interactions between C/N and TS (p < 0.0001), and between C/N and Biochar (p < 0.05). The trained ANN (3−3−1) was less accurate (R2 = 0.9926, RMSE = 1.80) compared to RSM. The optimization results by RSM and ANN coupled with GA (ANN-GA) were both validated with prediction errors <0.5%. The optimization results by ANN-GA should be used since it generated a higher maximum MY of 290.7 ± 0.2 mL CH4/g VS added, under the optimal conditions of C/N ratio 24.46, TS 5.03%, and Biochar 8.73% TS, showing an improvement of 20.6% (compared to the control) through process optimization. The methods can also be applied in other scenarios for process modeling and optimization. The optimized results could support real applications of using additives including biochar, active carbon, nanoparticles, etc., to promote the bioenergy production from AD of agricultural wastes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
会飞的生菜完成签到,获得积分10
刚刚
碳酸氢钠完成签到,获得积分10
1秒前
丰富烧鹅完成签到,获得积分10
1秒前
HH发布了新的文献求助10
1秒前
小陀螺完成签到,获得积分10
1秒前
stt完成签到 ,获得积分10
1秒前
1秒前
上官若男应助拿抓抓拿采纳,获得10
2秒前
桔桔发布了新的文献求助10
2秒前
superspace完成签到,获得积分10
3秒前
豆包完成签到,获得积分10
3秒前
高分子发布了新的文献求助20
3秒前
yuchen完成签到,获得积分10
3秒前
雪花飘飘完成签到,获得积分10
3秒前
song完成签到 ,获得积分10
3秒前
Lucas应助紫气东来采纳,获得30
3秒前
领导范儿应助强健的大山采纳,获得10
3秒前
白衣修身完成签到,获得积分10
4秒前
bkagyin应助怡然的涫采纳,获得10
5秒前
神勇绮烟完成签到 ,获得积分10
5秒前
nanlinhua完成签到,获得积分10
5秒前
yan发布了新的文献求助10
5秒前
鲤鱼慕晴完成签到,获得积分10
7秒前
7秒前
十一的耳朵不是特别好完成签到,获得积分10
8秒前
机灵水卉发布了新的文献求助10
8秒前
桐桐应助夕荀采纳,获得10
8秒前
自然沁完成签到,获得积分10
9秒前
9秒前
我爱学习完成签到,获得积分10
10秒前
贲孱完成签到,获得积分10
10秒前
无风之旅完成签到,获得积分10
10秒前
pio发布了新的文献求助10
10秒前
renkemaomao完成签到,获得积分10
10秒前
gaoww完成签到,获得积分10
11秒前
哈牛柚子鹿完成签到,获得积分10
11秒前
章鱼小丸子完成签到,获得积分10
11秒前
那小子真帅完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977