Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion

生物炭 响应面法 生物能源 中心组合设计 厌氧消化 稻草 热解 均方误差 制浆造纸工业 数学 甲烷 化学 生物燃料 废物管理 工程类 统计 有机化学 无机化学
作者
Yuanhang Zhan,Jun Zhu
出处
期刊:Applied Energy [Elsevier]
卷期号:355: 122336-122336 被引量:8
标识
DOI:10.1016/j.apenergy.2023.122336
摘要

Biochar can be used to improve the anaerobic digestion (AD) of agricultural wastes for higher methane production. However, the interaction of biochar addition with other factors of the anaerobic co-digestion (Co-AD) process has rarely been investigated. In this study, process models based on response surface methodology (RSM) and artificial neural network (ANN) were compared in modeling the methane yield (MY, mL CH4/g VS added) from the Co-AD of poultry litter and wheat straw with biochar addition. Box-Behnken design was applied, with the controlling parameters being carbon to nitrogen ratio (C/N), total solids (TS, %), and biochar addition (Biochar, % TS). Numerical optimization and genetic algorithm (GA) were used as optimization tools for RSM and ANN, respectively. A significant second-order quadratic model was built by RSM (R2 = 0.9981 and RMSE = 0.91), which demonstrated significant interactions between C/N and TS (p < 0.0001), and between C/N and Biochar (p < 0.05). The trained ANN (3−3−1) was less accurate (R2 = 0.9926, RMSE = 1.80) compared to RSM. The optimization results by RSM and ANN coupled with GA (ANN-GA) were both validated with prediction errors <0.5%. The optimization results by ANN-GA should be used since it generated a higher maximum MY of 290.7 ± 0.2 mL CH4/g VS added, under the optimal conditions of C/N ratio 24.46, TS 5.03%, and Biochar 8.73% TS, showing an improvement of 20.6% (compared to the control) through process optimization. The methods can also be applied in other scenarios for process modeling and optimization. The optimized results could support real applications of using additives including biochar, active carbon, nanoparticles, etc., to promote the bioenergy production from AD of agricultural wastes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张琳完成签到 ,获得积分10
刚刚
完美世界应助向连虎采纳,获得10
1秒前
qwe完成签到,获得积分10
1秒前
斯文败类应助三木足球采纳,获得10
2秒前
ma发布了新的文献求助10
2秒前
故意的自行车完成签到,获得积分20
2秒前
whuhustwit发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
向连虎完成签到,获得积分20
7秒前
8秒前
9秒前
CodeCraft应助迅速凡旋采纳,获得10
10秒前
10秒前
颗粒完成签到,获得积分10
10秒前
ohno耶耶耶完成签到,获得积分10
12秒前
12秒前
Lucas应助故意的雅容采纳,获得10
12秒前
阿尼完成签到 ,获得积分10
13秒前
zz完成签到,获得积分10
13秒前
whatever举报无敌老金刚求助涉嫌违规
13秒前
小孟吖发布了新的文献求助10
13秒前
15秒前
夏夏子发布了新的文献求助10
15秒前
shou85完成签到 ,获得积分20
15秒前
15秒前
飞快的尔云完成签到,获得积分20
15秒前
归尘发布了新的文献求助10
15秒前
18秒前
不懈奋进应助sci采纳,获得30
18秒前
liyk完成签到,获得积分10
18秒前
打打应助maxspecter采纳,获得10
18秒前
科研通AI5应助xm采纳,获得10
18秒前
19秒前
19秒前
20秒前
Szj发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
文章快快来应助wwj采纳,获得10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546424
求助须知:如何正确求助?哪些是违规求助? 3123558
关于积分的说明 9355871
捐赠科研通 2822198
什么是DOI,文献DOI怎么找? 1551271
邀请新用户注册赠送积分活动 723295
科研通“疑难数据库(出版商)”最低求助积分说明 713690