Reinforcement Learning Based Black-Box Adversarial Attack for Robustness Improvement

强化学习 计算机科学 对抗制 稳健性(进化) 人工智能 机器学习 均方误差 模式识别(心理学) 数学 生物化学 化学 统计 基因
作者
Soumyendu Sarkar,Ashwin Ramesh Babu,Sajad Mousavi,Sahand Ghorbanpour,Vineet Gundecha,Ricardo Luna Gutiérrez,Antonio Guillén,Avisek Naug
标识
DOI:10.1109/case56687.2023.10260607
摘要

We propose a Reinforcement Learning (RL) based adversarial Black-box attack (RLAB) that aims at adding minimum distortion to the input iteratively to deceive image classification models. The RL agent learns to identify highly sensitive regions in the input's feature space to add distortions to induce misclassification with minimum steps and L2 norm. The agent also selectively removes noises introduced at earlier steps in the iteration, which has less impact on the model at a given state. This novel dual-action method is equivalent to doing a deep tree search to add noises without an exhaustive search, leading to the faster generation of an optimum adversarial sample. This black-box method focuses on naturally occurring distortion to effectively measure the robustness of models, a key element of trustworthiness. The proposed method beats existing heuristic based state-of-the-art black-box adversarial attacks on metrics such as the number of queries, L2 norm, and success rate on ImageNet and CIFAR-10 datasets. For the ImageNet dataset, the average number of queries achieved by the proposed method for ResNet-50, Inception-V3, and VGG-16 models are 42%, 32%, and 31 % better than the popular "Square Attack". Furthermore, retraining the model with adversarial samples significantly improved robustness when evaluated on benchmark datasets such as CIFAR-10-C with the metrics of adversarial error and mean corruption error (mCE). Demo: https://tinyurl.com/yr8f7x9t
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助ksak607155采纳,获得10
1秒前
文艺的筮完成签到 ,获得积分10
2秒前
贪玩代桃发布了新的文献求助10
2秒前
2秒前
小鱼完成签到,获得积分10
3秒前
菠萝菠萝哒应助anthea采纳,获得20
3秒前
3秒前
可爱的函函应助小丁采纳,获得10
3秒前
4秒前
聪明灵阳应助冷静新烟采纳,获得30
4秒前
bkagyin应助笑点低黄豆采纳,获得10
5秒前
HS发布了新的文献求助10
5秒前
6秒前
6秒前
小高同学发布了新的文献求助10
7秒前
batmanrobin发布了新的文献求助10
9秒前
10秒前
11秒前
dodox发布了新的文献求助100
12秒前
14秒前
15秒前
领导范儿应助耍酷含芙采纳,获得10
16秒前
17秒前
JamesPei应助姜姜采纳,获得10
17秒前
18秒前
心灵美的冷风完成签到 ,获得积分10
19秒前
玖玖完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
20秒前
zxy发布了新的文献求助10
20秒前
明理的舞仙完成签到 ,获得积分10
20秒前
香蕉觅云应助漠之梦采纳,获得20
21秒前
CodeCraft应助粽子采纳,获得10
21秒前
light发布了新的文献求助10
21秒前
苹果白山发布了新的文献求助30
22秒前
HS完成签到,获得积分10
22秒前
23秒前
YQQ关注了科研通微信公众号
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477027
求助须知:如何正确求助?哪些是违规求助? 3068547
关于积分的说明 9108474
捐赠科研通 2759970
什么是DOI,文献DOI怎么找? 1514539
邀请新用户注册赠送积分活动 700313
科研通“疑难数据库(出版商)”最低求助积分说明 699422