亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

scGCC: Graph Contrastive Clustering With Neighborhood Augmentations for scRNA-Seq Data Analysis

聚类分析 计算机科学 稳健性(进化) 人工智能 过度拟合 数据挖掘 特征学习 机器学习 降维 推论 图形 模式识别(心理学) 相关聚类 人工神经网络 理论计算机科学 基因 生物化学 化学
作者
Shengwen Tian,Jiancheng Ni,Yutian Wang,Chun-Hou Zheng,Cunmei Ji
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 6133-6143 被引量:5
标识
DOI:10.1109/jbhi.2023.3319551
摘要

Single-cell RNA sequencing (scRNA-seq) has rapidly emerged as a powerful technique for analyzing cellular heterogeneity at the individual cell level. In the analysis of scRNA-seq data, cell clustering is a critical step in downstream analysis, as it enables the identification of cell types and the discovery of novel cell subtypes. However, the characteristics of scRNA-seq data, such as high dimensionality and sparsity, dropout events and batch effects, present significant computational challenges for clustering analysis. In this study, we propose scGCC, a novel graph self-supervised contrastive learning model, to address the challenges faced in scRNA-seq data analysis. scGCC comprises two main components: a representation learning module and a clustering module. The scRNA-seq data is first fed into a representation learning module for training, which is then used for data classification through a clustering module. scGCC can learn low-dimensional denoised embeddings, which is advantageous for our clustering task. We introduce Graph Attention Networks (GAT) for cell representation learning, which enables better feature extraction and improved clustering accuracy. Additionally, we propose five data augmentation methods to improve clustering performance by increasing data diversity and reducing overfitting. These methods enhance the robustness of clustering results. Our experimental study on 14 real-world datasets has demonstrated that our model achieves extraordinary accuracy and robustness. We also perform downstream tasks, including batch effect removal, trajectory inference, and marker genes analysis, to verify the biological effectiveness of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助小刘小刘采纳,获得80
12秒前
38秒前
41秒前
Yuanyuan发布了新的文献求助10
44秒前
47秒前
烟花应助科研通管家采纳,获得10
47秒前
JamesPei应助77采纳,获得10
50秒前
阿K完成签到,获得积分10
51秒前
sophy发布了新的文献求助20
52秒前
58秒前
默己完成签到 ,获得积分10
1分钟前
77发布了新的文献求助10
1分钟前
害羞的高跟鞋完成签到,获得积分20
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
77完成签到,获得积分10
1分钟前
2分钟前
奋斗的小研完成签到,获得积分10
2分钟前
里昂义务发布了新的文献求助30
2分钟前
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6.1应助毛毛采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
老石完成签到 ,获得积分10
3分钟前
3分钟前
Yuanyuan发布了新的文献求助10
3分钟前
4分钟前
朝雪关注了科研通微信公众号
4分钟前
Yuanyuan发布了新的文献求助10
4分钟前
朝雪完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
arniu2008完成签到,获得积分20
5分钟前
科研通AI6.1应助曾经问雁采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788771
求助须知:如何正确求助?哪些是违规求助? 5711930
关于积分的说明 15473908
捐赠科研通 4916776
什么是DOI,文献DOI怎么找? 2646575
邀请新用户注册赠送积分活动 1594240
关于科研通互助平台的介绍 1548666