scGCC: Graph Contrastive Clustering With Neighborhood Augmentations for scRNA-Seq Data Analysis

聚类分析 计算机科学 稳健性(进化) 人工智能 过度拟合 数据挖掘 特征学习 机器学习 降维 推论 图形 模式识别(心理学) 相关聚类 人工神经网络 理论计算机科学 基因 生物化学 化学
作者
Shengwen Tian,Jiancheng Ni,Yutian Wang,Chun-Hou Zheng,Cunmei Ji
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 6133-6143 被引量:4
标识
DOI:10.1109/jbhi.2023.3319551
摘要

Single-cell RNA sequencing (scRNA-seq) has rapidly emerged as a powerful technique for analyzing cellular heterogeneity at the individual cell level. In the analysis of scRNA-seq data, cell clustering is a critical step in downstream analysis, as it enables the identification of cell types and the discovery of novel cell subtypes. However, the characteristics of scRNA-seq data, such as high dimensionality and sparsity, dropout events and batch effects, present significant computational challenges for clustering analysis. In this study, we propose scGCC, a novel graph self-supervised contrastive learning model, to address the challenges faced in scRNA-seq data analysis. scGCC comprises two main components: a representation learning module and a clustering module. The scRNA-seq data is first fed into a representation learning module for training, which is then used for data classification through a clustering module. scGCC can learn low-dimensional denoised embeddings, which is advantageous for our clustering task. We introduce Graph Attention Networks (GAT) for cell representation learning, which enables better feature extraction and improved clustering accuracy. Additionally, we propose five data augmentation methods to improve clustering performance by increasing data diversity and reducing overfitting. These methods enhance the robustness of clustering results. Our experimental study on 14 real-world datasets has demonstrated that our model achieves extraordinary accuracy and robustness. We also perform downstream tasks, including batch effect removal, trajectory inference, and marker genes analysis, to verify the biological effectiveness of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
111发布了新的文献求助10
3秒前
Eisbecher发布了新的文献求助10
5秒前
简单点完成签到 ,获得积分10
6秒前
卓儿发布了新的文献求助10
6秒前
7秒前
茶柠完成签到 ,获得积分10
7秒前
大胆绮应助摸鱼划水采纳,获得20
7秒前
dyc238100完成签到,获得积分10
8秒前
9秒前
W_G完成签到,获得积分10
10秒前
10秒前
Zsir完成签到,获得积分10
11秒前
hou发布了新的文献求助10
13秒前
英姑应助小高采纳,获得50
15秒前
111完成签到,获得积分10
16秒前
16秒前
Jasper应助Lenacici采纳,获得10
17秒前
晗晗有酒窝完成签到,获得积分10
18秒前
今后应助huang采纳,获得10
20秒前
23秒前
卓儿完成签到,获得积分10
23秒前
jyy关闭了jyy文献求助
26秒前
摸鱼划水完成签到,获得积分10
26秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
1111应助科研通管家采纳,获得10
27秒前
田様应助科研通管家采纳,获得30
27秒前
852应助科研通管家采纳,获得10
27秒前
也是难得取个名完成签到 ,获得积分10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
28秒前
1111应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
wang完成签到,获得积分10
28秒前
Orange应助科研通管家采纳,获得10
28秒前
满天星发布了新的文献求助20
28秒前
小二郎应助科研通管家采纳,获得30
28秒前
田様应助科研通管家采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662