清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

scGCC: Graph Contrastive Clustering With Neighborhood Augmentations for scRNA-Seq Data Analysis

聚类分析 计算机科学 稳健性(进化) 人工智能 过度拟合 数据挖掘 特征学习 机器学习 降维 推论 图形 模式识别(心理学) 相关聚类 人工神经网络 理论计算机科学 基因 生物化学 化学
作者
Shengwen Tian,Jiancheng Ni,Yutian Wang,Chun-Hou Zheng,Cunmei Ji
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 6133-6143 被引量:5
标识
DOI:10.1109/jbhi.2023.3319551
摘要

Single-cell RNA sequencing (scRNA-seq) has rapidly emerged as a powerful technique for analyzing cellular heterogeneity at the individual cell level. In the analysis of scRNA-seq data, cell clustering is a critical step in downstream analysis, as it enables the identification of cell types and the discovery of novel cell subtypes. However, the characteristics of scRNA-seq data, such as high dimensionality and sparsity, dropout events and batch effects, present significant computational challenges for clustering analysis. In this study, we propose scGCC, a novel graph self-supervised contrastive learning model, to address the challenges faced in scRNA-seq data analysis. scGCC comprises two main components: a representation learning module and a clustering module. The scRNA-seq data is first fed into a representation learning module for training, which is then used for data classification through a clustering module. scGCC can learn low-dimensional denoised embeddings, which is advantageous for our clustering task. We introduce Graph Attention Networks (GAT) for cell representation learning, which enables better feature extraction and improved clustering accuracy. Additionally, we propose five data augmentation methods to improve clustering performance by increasing data diversity and reducing overfitting. These methods enhance the robustness of clustering results. Our experimental study on 14 real-world datasets has demonstrated that our model achieves extraordinary accuracy and robustness. We also perform downstream tasks, including batch effect removal, trajectory inference, and marker genes analysis, to verify the biological effectiveness of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助科研通管家采纳,获得10
5秒前
31秒前
MTF完成签到 ,获得积分10
37秒前
41秒前
46秒前
赘婿应助moonsea0415采纳,获得10
59秒前
任性的紫翠完成签到,获得积分10
1分钟前
活泼雪碧完成签到 ,获得积分10
1分钟前
1分钟前
moonsea0415发布了新的文献求助10
1分钟前
moonsea0415完成签到,获得积分10
1分钟前
Joins_Su完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
Kevin发布了新的文献求助10
2分钟前
大个应助紧张的铃铛采纳,获得10
2分钟前
2分钟前
尤里有气发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
zakaria完成签到,获得积分10
3分钟前
紧张的铃铛完成签到,获得积分10
3分钟前
科研通AI6应助紧张的铃铛采纳,获得80
3分钟前
merrylake完成签到 ,获得积分10
3分钟前
4分钟前
Akim应助重庆森林采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
重庆森林发布了新的文献求助30
4分钟前
邢夏之完成签到 ,获得积分0
4分钟前
重庆森林完成签到,获得积分10
4分钟前
5分钟前
PeterLin完成签到,获得积分10
5分钟前
科研通AI6应助PeterLin采纳,获得10
5分钟前
Asofi完成签到,获得积分10
5分钟前
lulululululu发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633472
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723