A Novel Fuzzy Time Series Method Based on Dynamic Ridge Polynomial Neural Network With Penalty Term and Fuzzy Clustering Analysis

计算机科学 模糊逻辑 神经模糊 去模糊化 模糊聚类 人工神经网络 人工智能 模糊数 模糊集运算 时间序列 模糊分类 数据挖掘 机器学习 模糊控制系统 模糊集
作者
B. Wang,Xisong Miao,Huanyu Wei,Md. Golam Saklain,Yinan Zhi,Hongyan Jin,Jiaxie Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 130426-130438 被引量:2
标识
DOI:10.1109/access.2023.3332123
摘要

Due to the limitations of traditional time series models in handling semantic values and smallscale data, the concept of fuzzy time series forecasting has been introduced in academia.This model performs exceptionally well on fuzzy datasets, prompting many researchers to delve into this field.The general process of fuzzy time series analysis consists of the following stages: (1) domain partitioning; (2) formation of fuzzy sets for fuzzifying data;(3) extraction of fuzzy relationships; and (4) forecasting and defuzzification.Domain partitioning and the extraction of fuzzy relationships have always been crucial components of fuzzy time series forecasting.Until now, neural networks have been less commonly applied in the step of determining fuzzy relationships.Some researchers have attempted to utilize the Pi-Sigma neural network for the determination of fuzzy relationships.However, due to the fixed network structure that Pi-Sigma neural networks cannot adapt to changes over time, it has been indicated that it is not a universal approximator.Its performance in handling complex dynamic time series has not been satisfactory.In this paper, we utilize Fuzzy C-Means Clustering (FCM) to partition the domain into unequal-length intervals and employ a highorder dynamic neural network known as Dynamic Ridge Polynomial Neural Network (DRPNN).This network can start with a small basic structure and gradually increase its structural complexity as learning progresses until it achieves the required task accuracy, which demonstrates superior performance in handling complex time series data.During the training process, we employ a novel gradient descent training algorithm with penalty terms.We conducted tests on this algorithm using nine real-world datasets and performed Friedman and Bonferroni-Dunn tests to ensure that the proposed algorithm exhibits statistical performance superiority compared to other methods in the literature.The results indicate that our algorithm outperforms those from other studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
man发布了新的文献求助10
刚刚
小玲玲完成签到,获得积分10
1秒前
wuti完成签到,获得积分10
1秒前
1秒前
斯文败类应助小刘小刘采纳,获得10
1秒前
邵将发布了新的文献求助10
1秒前
aeyang发布了新的文献求助10
1秒前
bkagyin应助WW采纳,获得10
1秒前
2秒前
2秒前
MYSHOW发布了新的文献求助30
2秒前
2秒前
不知道发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
吃鱼鱼鱼完成签到,获得积分10
3秒前
4秒前
松桕柏完成签到,获得积分10
4秒前
5秒前
刻苦的三问应助思玉采纳,获得10
5秒前
5秒前
wuti发布了新的文献求助20
5秒前
无花果应助刘天强采纳,获得10
6秒前
bubbull发布了新的文献求助10
6秒前
清樾完成签到 ,获得积分10
6秒前
zhang完成签到,获得积分10
6秒前
驱蚊器发布了新的文献求助30
7秒前
高高发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
ZL张莉发布了新的文献求助30
8秒前
8秒前
丘比特应助积极紫翠采纳,获得10
8秒前
Liu完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
英姑应助研究生采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403