A Novel Fuzzy Time Series Method Based on Dynamic Ridge Polynomial Neural Network With Penalty Term and Fuzzy Clustering Analysis

计算机科学 模糊逻辑 神经模糊 去模糊化 模糊聚类 人工神经网络 人工智能 模糊数 模糊集运算 时间序列 模糊分类 数据挖掘 机器学习 模糊控制系统 模糊集
作者
B. Wang,Xisong Miao,Huanyu Wei,Md. Golam Saklain,Yinan Zhi,Hongyan Jin,Jiaxie Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 130426-130438 被引量:2
标识
DOI:10.1109/access.2023.3332123
摘要

Due to the limitations of traditional time series models in handling semantic values and smallscale data, the concept of fuzzy time series forecasting has been introduced in academia.This model performs exceptionally well on fuzzy datasets, prompting many researchers to delve into this field.The general process of fuzzy time series analysis consists of the following stages: (1) domain partitioning; (2) formation of fuzzy sets for fuzzifying data;(3) extraction of fuzzy relationships; and (4) forecasting and defuzzification.Domain partitioning and the extraction of fuzzy relationships have always been crucial components of fuzzy time series forecasting.Until now, neural networks have been less commonly applied in the step of determining fuzzy relationships.Some researchers have attempted to utilize the Pi-Sigma neural network for the determination of fuzzy relationships.However, due to the fixed network structure that Pi-Sigma neural networks cannot adapt to changes over time, it has been indicated that it is not a universal approximator.Its performance in handling complex dynamic time series has not been satisfactory.In this paper, we utilize Fuzzy C-Means Clustering (FCM) to partition the domain into unequal-length intervals and employ a highorder dynamic neural network known as Dynamic Ridge Polynomial Neural Network (DRPNN).This network can start with a small basic structure and gradually increase its structural complexity as learning progresses until it achieves the required task accuracy, which demonstrates superior performance in handling complex time series data.During the training process, we employ a novel gradient descent training algorithm with penalty terms.We conducted tests on this algorithm using nine real-world datasets and performed Friedman and Bonferroni-Dunn tests to ensure that the proposed algorithm exhibits statistical performance superiority compared to other methods in the literature.The results indicate that our algorithm outperforms those from other studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Silvia完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
mie完成签到,获得积分10
1秒前
1秒前
杨德帅发布了新的文献求助10
2秒前
椰树椰汁发布了新的文献求助10
3秒前
连长发布了新的文献求助10
4秒前
CQ完成签到 ,获得积分10
4秒前
刘桑桑完成签到,获得积分10
5秒前
5秒前
Fortune完成签到,获得积分10
5秒前
执着念烟完成签到,获得积分10
5秒前
指南针发布了新的文献求助10
6秒前
6秒前
喂喂醒醒晚安了完成签到,获得积分10
8秒前
pluto应助冰美式不加糖采纳,获得10
8秒前
Fortune发布了新的文献求助10
9秒前
天天快乐应助xccc采纳,获得10
9秒前
10秒前
11秒前
11秒前
青葱之松完成签到,获得积分10
12秒前
浮游应助地啦啦啦采纳,获得10
12秒前
机智的弱发布了新的文献求助10
14秒前
lokiyyy发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
999999发布了新的文献求助10
16秒前
16秒前
BYC发布了新的文献求助10
19秒前
大个应助xiankanyun采纳,获得10
19秒前
YUJIALING完成签到 ,获得积分10
19秒前
司忆发布了新的文献求助10
19秒前
张倩发布了新的文献求助10
20秒前
文欣妍完成签到,获得积分10
21秒前
SONG完成签到,获得积分10
22秒前
慕青应助AKA采纳,获得10
23秒前
25秒前
25秒前
SciGPT应助跳跃的小林采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768