A Novel Fuzzy Time Series Method Based on Dynamic Ridge Polynomial Neural Network With Penalty Term and Fuzzy Clustering Analysis

计算机科学 模糊逻辑 神经模糊 去模糊化 模糊聚类 人工神经网络 人工智能 模糊数 模糊集运算 时间序列 模糊分类 数据挖掘 机器学习 模糊控制系统 模糊集
作者
B. Wang,Xisong Miao,Huanyu Wei,Md. Golam Saklain,Yinan Zhi,Hongyan Jin,Jiaxie Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 130426-130438 被引量:2
标识
DOI:10.1109/access.2023.3332123
摘要

Due to the limitations of traditional time series models in handling semantic values and smallscale data, the concept of fuzzy time series forecasting has been introduced in academia.This model performs exceptionally well on fuzzy datasets, prompting many researchers to delve into this field.The general process of fuzzy time series analysis consists of the following stages: (1) domain partitioning; (2) formation of fuzzy sets for fuzzifying data;(3) extraction of fuzzy relationships; and (4) forecasting and defuzzification.Domain partitioning and the extraction of fuzzy relationships have always been crucial components of fuzzy time series forecasting.Until now, neural networks have been less commonly applied in the step of determining fuzzy relationships.Some researchers have attempted to utilize the Pi-Sigma neural network for the determination of fuzzy relationships.However, due to the fixed network structure that Pi-Sigma neural networks cannot adapt to changes over time, it has been indicated that it is not a universal approximator.Its performance in handling complex dynamic time series has not been satisfactory.In this paper, we utilize Fuzzy C-Means Clustering (FCM) to partition the domain into unequal-length intervals and employ a highorder dynamic neural network known as Dynamic Ridge Polynomial Neural Network (DRPNN).This network can start with a small basic structure and gradually increase its structural complexity as learning progresses until it achieves the required task accuracy, which demonstrates superior performance in handling complex time series data.During the training process, we employ a novel gradient descent training algorithm with penalty terms.We conducted tests on this algorithm using nine real-world datasets and performed Friedman and Bonferroni-Dunn tests to ensure that the proposed algorithm exhibits statistical performance superiority compared to other methods in the literature.The results indicate that our algorithm outperforms those from other studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
傲骨完成签到 ,获得积分10
刚刚
1秒前
皮皮蛙发布了新的文献求助10
1秒前
猪猪hero发布了新的文献求助10
1秒前
迷路尔槐完成签到,获得积分10
1秒前
酷波er应助niko采纳,获得10
1秒前
world完成签到,获得积分10
1秒前
无花果应助niko采纳,获得10
1秒前
科研通AI6应助niko采纳,获得10
1秒前
酷波er应助niko采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
shining发布了新的文献求助10
2秒前
2秒前
maxsis应助yz采纳,获得10
3秒前
冰冰完成签到,获得积分10
3秒前
3秒前
3秒前
隐形曼青应助hai采纳,获得10
3秒前
3秒前
4秒前
4秒前
齐齐发布了新的文献求助10
4秒前
刘方欣发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
小林不打烊完成签到,获得积分10
6秒前
华仔应助xzh采纳,获得10
7秒前
卷王完成签到,获得积分10
7秒前
7秒前
猪猪hero发布了新的文献求助10
7秒前
呼了个呼发布了新的文献求助10
8秒前
搜集达人应助LUOYI采纳,获得30
8秒前
迷路尔槐发布了新的文献求助10
8秒前
赵yy应助Feegood采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531486
求助须知:如何正确求助?哪些是违规求助? 4620295
关于积分的说明 14572638
捐赠科研通 4559928
什么是DOI,文献DOI怎么找? 2498650
邀请新用户注册赠送积分活动 1478588
关于科研通互助平台的介绍 1449980