A Novel Fuzzy Time Series Method Based on Dynamic Ridge Polynomial Neural Network With Penalty Term and Fuzzy Clustering Analysis

计算机科学 模糊逻辑 神经模糊 去模糊化 模糊聚类 人工神经网络 人工智能 模糊数 模糊集运算 时间序列 模糊分类 数据挖掘 机器学习 模糊控制系统 模糊集
作者
B. Wang,Xisong Miao,Huanyu Wei,Md. Golam Saklain,Yinan Zhi,Hongyan Jin,Jiaxie Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 130426-130438 被引量:2
标识
DOI:10.1109/access.2023.3332123
摘要

Due to the limitations of traditional time series models in handling semantic values and smallscale data, the concept of fuzzy time series forecasting has been introduced in academia.This model performs exceptionally well on fuzzy datasets, prompting many researchers to delve into this field.The general process of fuzzy time series analysis consists of the following stages: (1) domain partitioning; (2) formation of fuzzy sets for fuzzifying data;(3) extraction of fuzzy relationships; and (4) forecasting and defuzzification.Domain partitioning and the extraction of fuzzy relationships have always been crucial components of fuzzy time series forecasting.Until now, neural networks have been less commonly applied in the step of determining fuzzy relationships.Some researchers have attempted to utilize the Pi-Sigma neural network for the determination of fuzzy relationships.However, due to the fixed network structure that Pi-Sigma neural networks cannot adapt to changes over time, it has been indicated that it is not a universal approximator.Its performance in handling complex dynamic time series has not been satisfactory.In this paper, we utilize Fuzzy C-Means Clustering (FCM) to partition the domain into unequal-length intervals and employ a highorder dynamic neural network known as Dynamic Ridge Polynomial Neural Network (DRPNN).This network can start with a small basic structure and gradually increase its structural complexity as learning progresses until it achieves the required task accuracy, which demonstrates superior performance in handling complex time series data.During the training process, we employ a novel gradient descent training algorithm with penalty terms.We conducted tests on this algorithm using nine real-world datasets and performed Friedman and Bonferroni-Dunn tests to ensure that the proposed algorithm exhibits statistical performance superiority compared to other methods in the literature.The results indicate that our algorithm outperforms those from other studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷你的夜天完成签到 ,获得积分10
1秒前
卡卡完成签到,获得积分10
2秒前
Tina酱完成签到,获得积分10
2秒前
浮沉完成签到,获得积分10
3秒前
火星上的泡芙完成签到,获得积分10
3秒前
xiaochuan完成签到,获得积分10
3秒前
zhangxin完成签到,获得积分10
6秒前
氟兊锝钼完成签到 ,获得积分10
7秒前
优雅含灵完成签到 ,获得积分10
12秒前
我爱Chem完成签到 ,获得积分10
16秒前
liciky完成签到 ,获得积分10
16秒前
ES完成签到 ,获得积分0
19秒前
19秒前
哈哈哈哈完成签到 ,获得积分10
23秒前
佳期如梦完成签到 ,获得积分10
23秒前
书生完成签到,获得积分10
24秒前
rice0601完成签到,获得积分10
25秒前
arsenal完成签到 ,获得积分10
27秒前
张西西完成签到 ,获得积分10
28秒前
小垃圾10号完成签到,获得积分10
30秒前
ninomae完成签到 ,获得积分10
30秒前
sdfdzhang完成签到 ,获得积分10
32秒前
想睡觉的小笼包完成签到 ,获得积分10
34秒前
默默灭绝完成签到 ,获得积分10
35秒前
义气的元柏完成签到 ,获得积分10
36秒前
fanlin完成签到,获得积分0
37秒前
轻松元绿完成签到 ,获得积分10
38秒前
霍三石完成签到,获得积分10
38秒前
酷波er应助小胡采纳,获得10
40秒前
进退须臾完成签到,获得积分10
40秒前
倪小呆完成签到 ,获得积分10
42秒前
Wen完成签到 ,获得积分10
42秒前
violetlishu完成签到 ,获得积分10
45秒前
明理从露完成签到 ,获得积分10
45秒前
木木完成签到,获得积分10
49秒前
benyu完成签到,获得积分10
51秒前
七月星河完成签到 ,获得积分10
51秒前
Lucky.完成签到 ,获得积分0
53秒前
yjy完成签到 ,获得积分10
54秒前
冰叶点点完成签到 ,获得积分10
54秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167238
求助须知:如何正确求助?哪些是违规求助? 2818724
关于积分的说明 7922063
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443