A Novel Fuzzy Time Series Method Based on Dynamic Ridge Polynomial Neural Network With Penalty Term and Fuzzy Clustering Analysis

计算机科学 模糊逻辑 神经模糊 去模糊化 模糊聚类 人工神经网络 人工智能 模糊数 模糊集运算 时间序列 模糊分类 数据挖掘 机器学习 模糊控制系统 模糊集
作者
B. Wang,Xisong Miao,Huanyu Wei,Md. Golam Saklain,Yinan Zhi,Hongyan Jin,Jiaxie Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 130426-130438 被引量:2
标识
DOI:10.1109/access.2023.3332123
摘要

Due to the limitations of traditional time series models in handling semantic values and smallscale data, the concept of fuzzy time series forecasting has been introduced in academia.This model performs exceptionally well on fuzzy datasets, prompting many researchers to delve into this field.The general process of fuzzy time series analysis consists of the following stages: (1) domain partitioning; (2) formation of fuzzy sets for fuzzifying data;(3) extraction of fuzzy relationships; and (4) forecasting and defuzzification.Domain partitioning and the extraction of fuzzy relationships have always been crucial components of fuzzy time series forecasting.Until now, neural networks have been less commonly applied in the step of determining fuzzy relationships.Some researchers have attempted to utilize the Pi-Sigma neural network for the determination of fuzzy relationships.However, due to the fixed network structure that Pi-Sigma neural networks cannot adapt to changes over time, it has been indicated that it is not a universal approximator.Its performance in handling complex dynamic time series has not been satisfactory.In this paper, we utilize Fuzzy C-Means Clustering (FCM) to partition the domain into unequal-length intervals and employ a highorder dynamic neural network known as Dynamic Ridge Polynomial Neural Network (DRPNN).This network can start with a small basic structure and gradually increase its structural complexity as learning progresses until it achieves the required task accuracy, which demonstrates superior performance in handling complex time series data.During the training process, we employ a novel gradient descent training algorithm with penalty terms.We conducted tests on this algorithm using nine real-world datasets and performed Friedman and Bonferroni-Dunn tests to ensure that the proposed algorithm exhibits statistical performance superiority compared to other methods in the literature.The results indicate that our algorithm outperforms those from other studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BenQiu完成签到,获得积分10
1秒前
1秒前
shirley完成签到,获得积分10
1秒前
高贵路灯发布了新的文献求助10
1秒前
1秒前
neao完成签到 ,获得积分10
3秒前
3秒前
孤独寻云完成签到,获得积分10
3秒前
我有一个超能力完成签到 ,获得积分10
4秒前
111111完成签到,获得积分10
4秒前
YWang完成签到,获得积分10
5秒前
子车谷波完成签到,获得积分10
5秒前
5秒前
5秒前
永康完成签到,获得积分10
6秒前
muyi完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
高贵路灯完成签到,获得积分10
7秒前
Hello应助缓慢易云采纳,获得10
7秒前
7秒前
大力向南发布了新的文献求助10
7秒前
孙福禄应助戚薇采纳,获得10
8秒前
从容芮应助孤独寻云采纳,获得50
8秒前
9秒前
包子完成签到,获得积分10
9秒前
112255完成签到,获得积分20
9秒前
叶梓轩完成签到 ,获得积分10
9秒前
9秒前
冷酷严青发布了新的文献求助10
9秒前
pojian完成签到,获得积分10
9秒前
mayi完成签到,获得积分10
10秒前
JoshuaChen发布了新的文献求助10
10秒前
11秒前
我是老大应助畅快的书兰采纳,获得10
12秒前
12秒前
N型半导体发布了新的文献求助10
13秒前
烟花应助039Hc采纳,获得10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582