Optimizing drug discovery using multitasking models for quantitative structure–biological effect relationships: an update of the literature

药物发现 计算机科学 计算模型 合理化(经济学) 可药性 数据科学 风险分析(工程) 计算生物学 人工智能 生物信息学 医学 生物 哲学 生物化学 认识论 基因
作者
Valeria V. Kleandrova,M. Natália D. S. Cordeiro,Alejandro Speck‐Planche
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:18 (11): 1231-1243
标识
DOI:10.1080/17460441.2023.2251385
摘要

ABSTRACTIntroduction Drug discovery has provided modern societies with the means to fight against many diseases. In this sense, computational methods have been at the forefront, playing an important role in rationalizing the search for novel drugs. Yet, tackling phenomena such as the multi-genic nature of diseases and drug resistance are limitations of the current computational methods. Multi-tasking models for quantitative structure-biological effect relationships (mtk-QSBER) have emerged to overcome such limitations.Areas covered The present review describes an update on the fundamentals and applications of the mtk-QSBER models as tools to accelerate multiple stages/substages of the drug discovery process.Expert opinion Computational approaches are extremely important for the rationalization of the search for novel and efficacious therapeutic agents. However, they need to focus more on the multi-target drug discovery paradigm. In this sense, mtk-QSBER models are particularly suited for multi-target drug discovery, offering encouraging opportunities across multiple therapeutic areas and scientific disciplines associated with drug discovery.KEYWORDS: mtk-QSBERQSARtopological indicesfragment-based topological designPTMLBox-Jenkins approach Article highlights Current computational methods have limitations that prevent them from solving the current challenges in drug discoveryMtk-QSBER models can overcome all the limitations of modern computational methods for drug discovery.The Box-Jenkins approach is the core step for the development of mtk-QSBER models.Mtk-QSBER models can accelerate drug development in a multi-target drug discovery scenario.Mtk-QSBER models offer encouraging opportunities across multiple therapeutic areas and scientific disciplines associated with drug discovery.Declaration of interestThe authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThis work was financially supported by the Foundation for Science and Technology/the Ministry of Science, Technology and Higher Education of the Government of Portugal, through grant UIDB/50006/2020.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tanjianxin发布了新的文献求助10
刚刚
1秒前
霸王龙完成签到,获得积分10
1秒前
1秒前
1秒前
细心映寒发布了新的文献求助10
1秒前
哈哈发布了新的文献求助10
2秒前
2秒前
安静的雨完成签到,获得积分10
2秒前
3秒前
3秒前
liu完成签到,获得积分10
3秒前
3秒前
神麒小雪完成签到,获得积分10
3秒前
苹果酸奶发布了新的文献求助10
3秒前
4秒前
粥粥完成签到 ,获得积分10
4秒前
小离发布了新的文献求助30
5秒前
6秒前
nk完成签到 ,获得积分10
6秒前
kkk完成签到 ,获得积分10
6秒前
韭菜发布了新的文献求助10
6秒前
KSGGS发布了新的文献求助30
7秒前
李爱国应助tanjianxin采纳,获得10
7秒前
7秒前
7秒前
柚子发布了新的文献求助10
8秒前
8秒前
8秒前
SciGPT应助小可采纳,获得10
8秒前
9秒前
9秒前
Akim应助若狂采纳,获得10
9秒前
Owen应助困困咪采纳,获得10
9秒前
9秒前
大雁完成签到 ,获得积分10
10秒前
就这样完成签到 ,获得积分10
10秒前
nn发布了新的文献求助10
10秒前
manan发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759