Optimizing drug discovery using multitasking models for quantitative structure–biological effect relationships: an update of the literature

药物发现 计算机科学 计算模型 合理化(经济学) 可药性 数据科学 风险分析(工程) 计算生物学 人工智能 生物信息学 医学 生物 哲学 生物化学 认识论 基因
作者
Valeria V. Kleandrova,M. Natália D. S. Cordeiro,Alejandro Speck‐Planche
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:18 (11): 1231-1243
标识
DOI:10.1080/17460441.2023.2251385
摘要

ABSTRACTIntroduction Drug discovery has provided modern societies with the means to fight against many diseases. In this sense, computational methods have been at the forefront, playing an important role in rationalizing the search for novel drugs. Yet, tackling phenomena such as the multi-genic nature of diseases and drug resistance are limitations of the current computational methods. Multi-tasking models for quantitative structure-biological effect relationships (mtk-QSBER) have emerged to overcome such limitations.Areas covered The present review describes an update on the fundamentals and applications of the mtk-QSBER models as tools to accelerate multiple stages/substages of the drug discovery process.Expert opinion Computational approaches are extremely important for the rationalization of the search for novel and efficacious therapeutic agents. However, they need to focus more on the multi-target drug discovery paradigm. In this sense, mtk-QSBER models are particularly suited for multi-target drug discovery, offering encouraging opportunities across multiple therapeutic areas and scientific disciplines associated with drug discovery.KEYWORDS: mtk-QSBERQSARtopological indicesfragment-based topological designPTMLBox-Jenkins approach Article highlights Current computational methods have limitations that prevent them from solving the current challenges in drug discoveryMtk-QSBER models can overcome all the limitations of modern computational methods for drug discovery.The Box-Jenkins approach is the core step for the development of mtk-QSBER models.Mtk-QSBER models can accelerate drug development in a multi-target drug discovery scenario.Mtk-QSBER models offer encouraging opportunities across multiple therapeutic areas and scientific disciplines associated with drug discovery.Declaration of interestThe authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThis work was financially supported by the Foundation for Science and Technology/the Ministry of Science, Technology and Higher Education of the Government of Portugal, through grant UIDB/50006/2020.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不喝咖啡会死完成签到,获得积分10
1秒前
2秒前
111发布了新的文献求助10
2秒前
李健应助盛夏细闻采纳,获得10
2秒前
nurzat发布了新的文献求助10
3秒前
4秒前
VERY完成签到,获得积分20
4秒前
bkagyin应助zyfqpc采纳,获得10
5秒前
交钱上班完成签到,获得积分10
5秒前
6秒前
7秒前
PSY完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
zeyulll发布了新的文献求助10
9秒前
orixero应助Snoopy采纳,获得10
10秒前
10秒前
迢迢笙箫应助加力采纳,获得10
11秒前
edward发布了新的文献求助10
11秒前
李健的粉丝团团长应助soar采纳,获得10
11秒前
12秒前
害羞千凝发布了新的文献求助10
12秒前
万事顺遂发布了新的文献求助10
12秒前
袁莱发布了新的文献求助10
12秒前
liu发布了新的文献求助10
14秒前
Ava应助liulei采纳,获得10
14秒前
15秒前
Augusterny发布了新的文献求助30
16秒前
天真怜晴发布了新的文献求助10
17秒前
Jasper应助万幸鹿采纳,获得10
18秒前
19秒前
自然友菱完成签到,获得积分10
20秒前
袁莱完成签到,获得积分20
20秒前
21秒前
橙子发布了新的文献求助10
21秒前
狗蛋发布了新的文献求助10
21秒前
ding应助LLL采纳,获得10
23秒前
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149723
求助须知:如何正确求助?哪些是违规求助? 2800743
关于积分的说明 7841670
捐赠科研通 2458302
什么是DOI,文献DOI怎么找? 1308386
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706