Optimizing drug discovery using multitasking models for quantitative structure–biological effect relationships: an update of the literature

药物发现 计算机科学 计算模型 合理化(经济学) 可药性 数据科学 风险分析(工程) 计算生物学 人工智能 生物信息学 医学 生物 生物化学 基因 认识论 哲学
作者
Valeria V. Kleandrova,M. Natália D. S. Cordeiro,Alejandro Speck‐Planche
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
卷期号:18 (11): 1231-1243
标识
DOI:10.1080/17460441.2023.2251385
摘要

ABSTRACTIntroduction Drug discovery has provided modern societies with the means to fight against many diseases. In this sense, computational methods have been at the forefront, playing an important role in rationalizing the search for novel drugs. Yet, tackling phenomena such as the multi-genic nature of diseases and drug resistance are limitations of the current computational methods. Multi-tasking models for quantitative structure-biological effect relationships (mtk-QSBER) have emerged to overcome such limitations.Areas covered The present review describes an update on the fundamentals and applications of the mtk-QSBER models as tools to accelerate multiple stages/substages of the drug discovery process.Expert opinion Computational approaches are extremely important for the rationalization of the search for novel and efficacious therapeutic agents. However, they need to focus more on the multi-target drug discovery paradigm. In this sense, mtk-QSBER models are particularly suited for multi-target drug discovery, offering encouraging opportunities across multiple therapeutic areas and scientific disciplines associated with drug discovery.KEYWORDS: mtk-QSBERQSARtopological indicesfragment-based topological designPTMLBox-Jenkins approach Article highlights Current computational methods have limitations that prevent them from solving the current challenges in drug discoveryMtk-QSBER models can overcome all the limitations of modern computational methods for drug discovery.The Box-Jenkins approach is the core step for the development of mtk-QSBER models.Mtk-QSBER models can accelerate drug development in a multi-target drug discovery scenario.Mtk-QSBER models offer encouraging opportunities across multiple therapeutic areas and scientific disciplines associated with drug discovery.Declaration of interestThe authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThis work was financially supported by the Foundation for Science and Technology/the Ministry of Science, Technology and Higher Education of the Government of Portugal, through grant UIDB/50006/2020.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助yu采纳,获得10
刚刚
2秒前
4秒前
搬运工应助RESLR采纳,获得20
5秒前
仁仁发布了新的文献求助10
6秒前
7秒前
bckl888完成签到,获得积分10
8秒前
长心发布了新的文献求助10
8秒前
刚刚发布了新的文献求助10
9秒前
奶盖发布了新的文献求助80
9秒前
10秒前
10秒前
12秒前
科研通AI2S应助纯牛奶杀手采纳,获得10
12秒前
xiao完成签到 ,获得积分10
13秒前
14秒前
xiaoguo发布了新的文献求助10
14秒前
kawayifenm完成签到,获得积分10
15秒前
sss发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
焦星星完成签到,获得积分10
17秒前
Double_N完成签到,获得积分10
18秒前
bias完成签到,获得积分10
19秒前
仁仁完成签到,获得积分10
19秒前
路人甲发布了新的文献求助200
20秒前
20秒前
科研通AI2S应助冷静的奇迹采纳,获得10
20秒前
佘炭炭完成签到,获得积分10
22秒前
Lynn怯霜静发布了新的文献求助10
22秒前
24秒前
彭于晏应助小马儿采纳,获得10
25秒前
25秒前
FashionBoy应助奶盖采纳,获得10
26秒前
SciGPT应助蝶衣采纳,获得10
28秒前
28秒前
苏苏发布了新的文献求助20
29秒前
纯牛奶杀手给纯牛奶杀手的求助进行了留言
29秒前
Wang发布了新的文献求助10
29秒前
Lynn怯霜静完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152