An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease

痴呆 壳核 医学 接收机工作特性 认知功能衰退 认知 内科学 帕金森病 回顾性队列研究 疾病 肿瘤科 精神科
作者
Chae Jung Park,Jihwan Eom,Ki Sung Park,Yae Won Park,Seok Jong Chung,Yun Joong Kim,Sung Soo Ahn,Jinna Kim,Phil Hyu Lee,Young H. Sohn,Seung‐Koo Lee
出处
期刊:npj Parkinson's disease 卷期号:9 (1) 被引量:4
标识
DOI:10.1038/s41531-023-00566-1
摘要

Cognitive impairment in Parkinson's disease (PD) severely affects patients' prognosis, and early detection of patients at high risk of dementia conversion is important for establishing treatment strategies. We aimed to investigate whether multiparametric MRI radiomics from basal ganglia can improve the prediction of dementia development in PD when integrated with clinical profiles. In this retrospective study, 262 patients with newly diagnosed PD (June 2008-July 2017, follow-up >5 years) were included. MRI radiomic features (n = 1284) were extracted from bilateral caudate and putamen. Two models were developed to predict dementia development: (1) a clinical model-age, disease duration, and cognitive composite scores, and (2) a combined clinical and radiomics model. The area under the receiver operating characteristic curve (AUC) were calculated for each model. The models' interpretabilities were studied. Among total 262 PD patients (mean age, 68 years ± 8 [standard deviation]; 134 men), 51 (30.4%), and 24 (25.5%) patients developed dementia within 5 years of PD diagnosis in the training (n = 168) and test sets (n = 94), respectively. The combined model achieved superior predictive performance compared to the clinical model in training (AUCs 0.928 vs. 0.894, P = 0.284) and test set (AUCs 0.889 vs. 0.722, P = 0.016). The cognitive composite scores of the frontal/executive function domain contributed most to predicting dementia. Radiomics derived from the caudate were also highly associated with cognitive decline. Multiparametric MRI radiomics may have an incremental prognostic value when integrated with clinical profiles to predict future cognitive decline in PD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流浪应助付研琪采纳,获得10
刚刚
害羞鬼完成签到,获得积分10
刚刚
刚刚
韩麒嘉发布了新的文献求助10
1秒前
zywzyw发布了新的文献求助10
1秒前
1秒前
FashionBoy应助cc采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
JiA完成签到,获得积分10
2秒前
小任完成签到,获得积分10
3秒前
果粒橙发布了新的文献求助10
3秒前
斯文败类应助麻辣老妖婆采纳,获得10
3秒前
花飞飞凡发布了新的文献求助10
3秒前
温暖静柏完成签到,获得积分20
4秒前
4秒前
科研通AI6应助myt采纳,获得10
4秒前
zhanng发布了新的文献求助10
5秒前
奇遇里发布了新的文献求助10
5秒前
李健的小迷弟应助承乐采纳,获得30
6秒前
小马甲应助Jian采纳,获得10
6秒前
卢秋宇完成签到,获得积分20
7秒前
叶子完成签到,获得积分10
7秒前
瞿琼瑶发布了新的文献求助80
8秒前
8秒前
苦苦发布了新的文献求助10
8秒前
8秒前
9秒前
华仔应助多情以山采纳,获得10
9秒前
奔跑西木发布了新的文献求助10
9秒前
9秒前
雨天有伞完成签到,获得积分10
10秒前
ZOLEI完成签到,获得积分10
10秒前
11秒前
超级万声发布了新的文献求助30
11秒前
执着蓝发布了新的文献求助10
11秒前
迷路巧曼完成签到,获得积分20
12秒前
害羞鬼发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836