Treat Noise as Domain Shift: Noise Feature Disentanglement for Underwater Perception and Maritime Surveys in Side-Scan Sonar Images

计算机科学 散斑噪声 人工智能 噪音(视频) 水下 侧扫声纳 斑点图案 计算机视觉 声纳 模式识别(心理学) 特征(语言学) 乘性噪声 电信 地质学 图像(数学) 语言学 海洋学 哲学 信号传递函数 传输(电信) 模拟信号
作者
Yongcan Yu,Jianhu Zhao,Chao Huang,Xi Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3322787
摘要

In underwater perception and maritime surveys, due to the scarcity of training data and perturbation of speckle noise, the detection performance of underwater objects in side-scan sonar (SSS) images is limited. To address these problems, we proposed a noise feature disentanglement YOLO (NFD-YOLO) by combining noise-agnostic features learning and attention mechanism. Firstly, we rethink the speckle noise by treating it as the domain shift between the training dataset and real-measured SSS images and build a domain generalization-based (DG-based) underwater object detection framework. Then, we extend YOLOv5 with a feature manipulation module, a noise-agnostic subnetwork, and an auxiliary noise-biased subnetwork for noise features disentanglement, more biases toward noise-agnostic features and less reliance on noise-biased features in underwater object detection, respectively. Finally, the ACmix attention module is introduced for a more powerful learning capacity and attention to the object areas based on a small dataset. According to the experiment results, the proposed NFD-YOLO achieved 75.1% mean average precision (mAP) in the test domain, which increased by 7.5% than YOLOv5, and 75.7% ± 0.4% mAP and 77.5% ± 1.6% mAP for different speckle noise distributions and transfer directions, respectively, which verified its generalization ability and robustness for speckle noise. Therefore, the proposed method can mitigate the effects of speckle noise and provides a new thought to address the speckle noise in underwater object detection with a small dataset, which is of significance and benefits for underwater perception and maritime surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让远望完成签到,获得积分20
刚刚
余人人完成签到,获得积分10
1秒前
水水水完成签到,获得积分10
1秒前
Keyan完成签到,获得积分10
2秒前
追寻妖妖发布了新的文献求助10
3秒前
3秒前
4秒前
FashionBoy应助WendyMei采纳,获得10
4秒前
cocolu应助令狐文博采纳,获得10
4秒前
小马甲应助骆驼顶顶采纳,获得10
4秒前
5秒前
5秒前
7秒前
SciGPT应助orangel采纳,获得10
8秒前
8秒前
8秒前
9秒前
koala完成签到,获得积分10
9秒前
无辜念露发布了新的文献求助10
9秒前
10秒前
10秒前
隐形千愁完成签到,获得积分20
10秒前
东方樱发布了新的文献求助10
10秒前
顺利菠萝完成签到 ,获得积分10
11秒前
mjsdx发布了新的文献求助10
12秒前
Machine发布了新的文献求助10
13秒前
13秒前
完美世界应助自然的茉莉采纳,获得10
14秒前
稀松发布了新的文献求助10
14秒前
科研通AI2S应助满洲里有象采纳,获得10
15秒前
17秒前
缓慢冥幽完成签到 ,获得积分10
17秒前
TSUNA发布了新的文献求助10
17秒前
令狐文博完成签到,获得积分10
17秒前
风雪夜贵人关注了科研通微信公众号
18秒前
调研昵称发布了新的文献求助10
18秒前
nhw发布了新的文献求助10
18秒前
清脆刺猬完成签到,获得积分10
19秒前
20秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302470
求助须知:如何正确求助?哪些是违规求助? 2936959
关于积分的说明 8479422
捐赠科研通 2610753
什么是DOI,文献DOI怎么找? 1425334
科研通“疑难数据库(出版商)”最低求助积分说明 662340
邀请新用户注册赠送积分活动 646652