Treat Noise as Domain Shift: Noise Feature Disentanglement for Underwater Perception and Maritime Surveys in Side-Scan Sonar Images

计算机科学 散斑噪声 人工智能 噪音(视频) 水下 侧扫声纳 斑点图案 计算机视觉 声纳 模式识别(心理学) 特征(语言学) 乘性噪声 电信 地质学 图像(数学) 语言学 海洋学 哲学 信号传递函数 传输(电信) 模拟信号
作者
Yongcan Yu,Jianhu Zhao,Chao Huang,Xi Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3322787
摘要

In underwater perception and maritime surveys, due to the scarcity of training data and perturbation of speckle noise, the detection performance of underwater objects in side-scan sonar (SSS) images is limited. To address these problems, we proposed a noise feature disentanglement YOLO (NFD-YOLO) by combining noise-agnostic features learning and attention mechanism. Firstly, we rethink the speckle noise by treating it as the domain shift between the training dataset and real-measured SSS images and build a domain generalization-based (DG-based) underwater object detection framework. Then, we extend YOLOv5 with a feature manipulation module, a noise-agnostic subnetwork, and an auxiliary noise-biased subnetwork for noise features disentanglement, more biases toward noise-agnostic features and less reliance on noise-biased features in underwater object detection, respectively. Finally, the ACmix attention module is introduced for a more powerful learning capacity and attention to the object areas based on a small dataset. According to the experiment results, the proposed NFD-YOLO achieved 75.1% mean average precision (mAP) in the test domain, which increased by 7.5% than YOLOv5, and 75.7% ± 0.4% mAP and 77.5% ± 1.6% mAP for different speckle noise distributions and transfer directions, respectively, which verified its generalization ability and robustness for speckle noise. Therefore, the proposed method can mitigate the effects of speckle noise and provides a new thought to address the speckle noise in underwater object detection with a small dataset, which is of significance and benefits for underwater perception and maritime surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的小蚂蚁完成签到 ,获得积分10
刚刚
1秒前
小高发布了新的文献求助10
1秒前
科研通AI5应助常常在努力采纳,获得10
1秒前
不要加糖发布了新的文献求助10
3秒前
闫伊森完成签到,获得积分10
3秒前
Rondab应助queenie采纳,获得30
4秒前
daguan完成签到,获得积分10
4秒前
Djnsbj发布了新的文献求助10
5秒前
griffon发布了新的文献求助10
6秒前
爆米花应助Letter采纳,获得10
6秒前
7秒前
泯工发布了新的文献求助10
8秒前
9秒前
完美世界应助不要加糖采纳,获得10
10秒前
11秒前
222发布了新的文献求助10
11秒前
12秒前
李爱国应助CHAIZH采纳,获得10
12秒前
科研通AI5应助蓝莓松饼采纳,获得10
13秒前
clyhg发布了新的文献求助10
13秒前
汉堡包应助王一一采纳,获得10
14秒前
le完成签到,获得积分10
15秒前
15秒前
聂越发布了新的文献求助10
15秒前
科目三应助joysa采纳,获得10
16秒前
16秒前
风清扬发布了新的文献求助10
16秒前
伯赏思山完成签到,获得积分10
17秒前
19秒前
科研通AI5应助Djnsbj采纳,获得10
20秒前
xsy完成签到 ,获得积分10
21秒前
22秒前
落俗发布了新的文献求助10
22秒前
23秒前
饼藏发布了新的文献求助10
24秒前
木头马尾发布了新的文献求助10
26秒前
KjLumos发布了新的文献求助10
26秒前
岁岁平安发布了新的文献求助10
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550