亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Treat Noise as Domain Shift: Noise Feature Disentanglement for Underwater Perception and Maritime Surveys in Side-Scan Sonar Images

计算机科学 散斑噪声 人工智能 噪音(视频) 水下 侧扫声纳 斑点图案 计算机视觉 声纳 模式识别(心理学) 特征(语言学) 乘性噪声 电信 地质学 图像(数学) 语言学 海洋学 哲学 信号传递函数 传输(电信) 模拟信号
作者
Yongcan Yu,Jianhu Zhao,Chao Huang,Xi Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:17
标识
DOI:10.1109/tgrs.2023.3322787
摘要

In underwater perception and maritime surveys, due to the scarcity of training data and perturbation of speckle noise, the detection performance of underwater objects in side-scan sonar (SSS) images is limited. To address these problems, we proposed a noise feature disentanglement YOLO (NFD-YOLO) by combining noise-agnostic features learning and attention mechanism. Firstly, we rethink the speckle noise by treating it as the domain shift between the training dataset and real-measured SSS images and build a domain generalization-based (DG-based) underwater object detection framework. Then, we extend YOLOv5 with a feature manipulation module, a noise-agnostic subnetwork, and an auxiliary noise-biased subnetwork for noise features disentanglement, more biases toward noise-agnostic features and less reliance on noise-biased features in underwater object detection, respectively. Finally, the ACmix attention module is introduced for a more powerful learning capacity and attention to the object areas based on a small dataset. According to the experiment results, the proposed NFD-YOLO achieved 75.1% mean average precision (mAP) in the test domain, which increased by 7.5% than YOLOv5, and 75.7% ± 0.4% mAP and 77.5% ± 1.6% mAP for different speckle noise distributions and transfer directions, respectively, which verified its generalization ability and robustness for speckle noise. Therefore, the proposed method can mitigate the effects of speckle noise and provides a new thought to address the speckle noise in underwater object detection with a small dataset, which is of significance and benefits for underwater perception and maritime surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
超级野狼发布了新的文献求助10
2秒前
所所应助光光采纳,获得10
3秒前
6秒前
fshappy完成签到,获得积分10
7秒前
吉吉国王的跟班完成签到 ,获得积分10
8秒前
8秒前
厚朴大师完成签到,获得积分10
12秒前
13秒前
Jayzie完成签到 ,获得积分10
17秒前
sss完成签到 ,获得积分10
21秒前
解你所忧完成签到 ,获得积分10
21秒前
22秒前
24秒前
shier发布了新的文献求助10
27秒前
27秒前
小眼是我的男神完成签到,获得积分10
29秒前
祝佳其完成签到 ,获得积分10
31秒前
艾扎克发布了新的文献求助10
33秒前
34秒前
自信号厂完成签到 ,获得积分0
38秒前
Damon完成签到,获得积分10
39秒前
jie完成签到,获得积分20
41秒前
艾扎克完成签到,获得积分20
43秒前
keyanbaicai完成签到,获得积分10
44秒前
48秒前
crx发布了新的文献求助10
53秒前
英姑应助crx采纳,获得10
1分钟前
Criminology34完成签到,获得积分0
1分钟前
情怀应助超级野狼采纳,获得10
1分钟前
轨迹应助Mydddg采纳,获得15
1分钟前
花陵完成签到 ,获得积分10
1分钟前
xiao完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754672
求助须知:如何正确求助?哪些是违规求助? 5488707
关于积分的说明 15380490
捐赠科研通 4893182
什么是DOI,文献DOI怎么找? 2631791
邀请新用户注册赠送积分活动 1579727
关于科研通互助平台的介绍 1535475