Treat Noise as Domain Shift: Noise Feature Disentanglement for Underwater Perception and Maritime Surveys in Side-Scan Sonar Images

计算机科学 散斑噪声 人工智能 噪音(视频) 水下 侧扫声纳 斑点图案 计算机视觉 声纳 模式识别(心理学) 特征(语言学) 乘性噪声 电信 地质学 图像(数学) 语言学 海洋学 哲学 信号传递函数 传输(电信) 模拟信号
作者
Yongcan Yu,Jianhu Zhao,Chao Huang,Xi Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:17
标识
DOI:10.1109/tgrs.2023.3322787
摘要

In underwater perception and maritime surveys, due to the scarcity of training data and perturbation of speckle noise, the detection performance of underwater objects in side-scan sonar (SSS) images is limited. To address these problems, we proposed a noise feature disentanglement YOLO (NFD-YOLO) by combining noise-agnostic features learning and attention mechanism. Firstly, we rethink the speckle noise by treating it as the domain shift between the training dataset and real-measured SSS images and build a domain generalization-based (DG-based) underwater object detection framework. Then, we extend YOLOv5 with a feature manipulation module, a noise-agnostic subnetwork, and an auxiliary noise-biased subnetwork for noise features disentanglement, more biases toward noise-agnostic features and less reliance on noise-biased features in underwater object detection, respectively. Finally, the ACmix attention module is introduced for a more powerful learning capacity and attention to the object areas based on a small dataset. According to the experiment results, the proposed NFD-YOLO achieved 75.1% mean average precision (mAP) in the test domain, which increased by 7.5% than YOLOv5, and 75.7% ± 0.4% mAP and 77.5% ± 1.6% mAP for different speckle noise distributions and transfer directions, respectively, which verified its generalization ability and robustness for speckle noise. Therefore, the proposed method can mitigate the effects of speckle noise and provides a new thought to address the speckle noise in underwater object detection with a small dataset, which is of significance and benefits for underwater perception and maritime surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信彩虹完成签到 ,获得积分10
1秒前
丘比特应助元谷雪采纳,获得10
1秒前
忧虑的靖巧完成签到 ,获得积分10
2秒前
卓卓卓卓完成签到,获得积分20
3秒前
4秒前
shencheng完成签到,获得积分10
4秒前
4秒前
4秒前
qiii发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
风清扬发布了新的文献求助10
8秒前
情怀应助负责的方盒采纳,获得10
8秒前
望TIAN完成签到,获得积分10
9秒前
WWW完成签到,获得积分10
9秒前
10秒前
汉堡包应助欢喜的祥采纳,获得10
10秒前
xiaoyu完成签到,获得积分10
10秒前
11秒前
打打应助王艺霖采纳,获得10
13秒前
13秒前
cll完成签到 ,获得积分10
14秒前
15秒前
15秒前
NBSHR完成签到,获得积分10
16秒前
orixero应助顺利的豌豆采纳,获得10
16秒前
16秒前
面壁思过发布了新的文献求助10
17秒前
17秒前
YH完成签到,获得积分10
17秒前
机智跳跳糖完成签到,获得积分10
17秒前
宇文半邪发布了新的文献求助10
19秒前
19秒前
20秒前
Mic应助星期日不上发条采纳,获得30
20秒前
www完成签到,获得积分10
21秒前
NBSHR发布了新的文献求助10
21秒前
熊熊发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233