BiFeO3-BaTiO3 ferroelectrics: Decrypting the mechanism of rare earth doping-induced electrical property discrepancy via scaling behavior and multi-level structure

材料科学 离子半径 铁电性 兴奋剂 铋铁氧体 电介质 电场 陶瓷 凝聚态物理 离子 化学物理 纳米技术 复合材料 光电子学 多铁性 物理 量子力学
作者
Deqing Tai,Bing Li,Haoyue Xue,Ting Zheng,Jiagang Wu
出处
期刊:Acta Materialia [Elsevier]
卷期号:262: 119411-119411 被引量:16
标识
DOI:10.1016/j.actamat.2023.119411
摘要

Rare earth doping has been widely used to modify electrical properties of piezo/ferroelectric materials. However, the physical mechanism behind property enhancement and the reason of property discrepancy induced by rare earth has been rarely solved in bismuth ferrite-barium titanate (BF-BT) ceramics. Here, two kinds of rare earth ions with different ion radii (La3+ and Sm3+) were separately introduced into Bi1-xRexFeO3-BaTiO3 (Re = La, Sm). As a result, doping an appropriate amount of rare earth ions (La3+ x=0.05 and Sm3+ x=0.04) can effectively improve the ferroelectricity and strain response. By combining ferroelectric scaling behavior and multi-level structure elucidation, the enhancement of electrical properties after La3+/Sm3+ doping can be attributed to the increase of total number of activated domains, the increased Bi ions off-centering and displacement of B-site ions coupled with the enhanced lattice deformation. Importantly, stronger lattice shrinkage and BO6 octahedral distortion can be achieved in Sm-doped ceramics, leading to a stronger intrinsic ferroelectric and strain response than that of La-doped ceramics, although a large enough electric field was required to release the intrinsic response because of the larger random field and dielectric relaxation induced by the larger ionic radius difference between Bi3+ and Sm3+. Oppositely, the decreased coercive field and promoted domain switching make the electrical response of La-doped ceramics can be released under a much lower electric field. The work highlights the role of rare earth doping and provides a paradigm for further designing high-performance BF-BT ferroelectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助聪明白秋采纳,获得10
刚刚
Chaiyuan完成签到 ,获得积分10
2秒前
共享精神应助简单奎采纳,获得10
2秒前
3秒前
辞忧完成签到,获得积分10
4秒前
喜庆发布了新的文献求助10
4秒前
领导范儿应助哈哈哈哈采纳,获得10
6秒前
6秒前
小王哪跑完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
lyx发布了新的文献求助10
12秒前
yyt完成签到 ,获得积分10
12秒前
13秒前
14秒前
fanfan发布了新的文献求助10
14秒前
15秒前
善学以致用应助juno采纳,获得10
17秒前
泡泡汽水发布了新的文献求助10
18秒前
小王同学发布了新的文献求助10
20秒前
vica发布了新的文献求助10
21秒前
22秒前
上官若男应助妥妥酱采纳,获得10
24秒前
25秒前
lyx完成签到,获得积分10
26秒前
28秒前
兔兔发布了新的文献求助20
29秒前
29秒前
科目三应助魔幻灯泡采纳,获得10
29秒前
互助遵法尚德应助喜庆采纳,获得10
29秒前
Smiles发布了新的文献求助10
30秒前
泡泡汽水完成签到,获得积分10
31秒前
小王同学完成签到,获得积分10
32秒前
FashionBoy应助陈住气采纳,获得10
32秒前
我现在感觉很颓完成签到,获得积分10
33秒前
哈哈哈哈发布了新的文献求助10
34秒前
wlnhyF完成签到,获得积分10
36秒前
斯文败类应助fenmiao采纳,获得30
38秒前
Smiles完成签到,获得积分10
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889328
捐赠科研通 2469852
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012