Multi-class deep learning architecture for classifying lung diseases from chest X-Ray and CT images

人工智能 卷积神经网络 计算机科学 深度学习 图像处理 模式识别(心理学) 上下文图像分类 图像(数学) 计算机辅助诊断 像素 机器学习
作者
Mona Hmoud AlSheikh,Omran Al Dandan,Ahmad Sami Al-Shamayleh,Hamid A. Jalab,Rabha W. Ibrahim
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:1
标识
DOI:10.1038/s41598-023-46147-3
摘要

Abstract Medical imaging is considered a suitable alternative testing method for the detection of lung diseases. Many researchers have been working to develop various detection methods that have aided in the prevention of lung diseases. To better understand the condition of the lung disease infection, chest X-Ray and CT scans are utilized to check the disease’s spread throughout the lungs. This study proposes an automated system for the detection multi lung diseases in X-Ray and CT scans. A customized convolutional neural network (CNN) and two pre-trained deep learning models with a new image enhancement model are proposed for image classification. The proposed lung disease detection comprises two main steps: pre-processing, and deep learning classification. The new image enhancement algorithm is developed in the pre-processing step using k-symbol Lerch transcendent functions model which enhancement images based on image pixel probability. While, in the classification step, the customized CNN architecture and two pre-trained CNN models Alex Net, and VGG16Net are developed. The proposed approach was tested on publicly available image datasets (CT, and X-Ray image dataset), and the results showed classification accuracy, sensitivity, and specificity of 98.60%, 98.40%, and 98.50% for the X-Ray image dataset, respectively, and 98.80%, 98.50%, 98.40% for the CT scans dataset, respectively. Overall, the obtained results highlight the advantages of the image enhancement model as a first step in processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳水香完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
852应助贲立辉采纳,获得10
1秒前
大喵发布了新的文献求助10
3秒前
Gao发布了新的文献求助10
3秒前
白桦林泪发布了新的文献求助10
4秒前
正直莫英发布了新的文献求助10
5秒前
6秒前
7秒前
HLQF完成签到,获得积分10
8秒前
江边鸟完成签到 ,获得积分10
9秒前
hg08完成签到,获得积分10
10秒前
丘比特应助小药同学采纳,获得10
10秒前
烟花应助zz采纳,获得10
12秒前
13秒前
卡卡罗特发布了新的文献求助10
14秒前
正直莫英完成签到,获得积分10
15秒前
黄彤彤关注了科研通微信公众号
15秒前
丁仪发布了新的文献求助10
15秒前
852应助毛毛采纳,获得10
15秒前
xyjf15完成签到,获得积分10
15秒前
卡尔拉完成签到,获得积分10
15秒前
Jasper应助Xylah_Rebecca采纳,获得10
18秒前
18秒前
SYLH应助赵杰采纳,获得10
18秒前
孙燕应助白桦林泪采纳,获得30
19秒前
田様应助白桦林泪采纳,获得10
19秒前
义气冷菱发布了新的文献求助10
19秒前
慕青应助Eleanor采纳,获得10
19秒前
20秒前
kitty完成签到 ,获得积分10
21秒前
李健的粉丝团团长应助Gao采纳,获得10
21秒前
要减肥完成签到,获得积分20
23秒前
24秒前
嘞是举仔发布了新的文献求助10
25秒前
黄彤彤发布了新的文献求助30
30秒前
顾矜应助hanshu采纳,获得10
30秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190