已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-class deep learning architecture for classifying lung diseases from chest X-Ray and CT images

人工智能 卷积神经网络 计算机科学 深度学习 图像处理 模式识别(心理学) 上下文图像分类 图像(数学) 计算机辅助诊断 像素 机器学习
作者
Mona Hmoud AlSheikh,Omran Al Dandan,Ahmad Sami Al-Shamayleh,Hamid A. Jalab,Rabha W. Ibrahim
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:1
标识
DOI:10.1038/s41598-023-46147-3
摘要

Abstract Medical imaging is considered a suitable alternative testing method for the detection of lung diseases. Many researchers have been working to develop various detection methods that have aided in the prevention of lung diseases. To better understand the condition of the lung disease infection, chest X-Ray and CT scans are utilized to check the disease’s spread throughout the lungs. This study proposes an automated system for the detection multi lung diseases in X-Ray and CT scans. A customized convolutional neural network (CNN) and two pre-trained deep learning models with a new image enhancement model are proposed for image classification. The proposed lung disease detection comprises two main steps: pre-processing, and deep learning classification. The new image enhancement algorithm is developed in the pre-processing step using k-symbol Lerch transcendent functions model which enhancement images based on image pixel probability. While, in the classification step, the customized CNN architecture and two pre-trained CNN models Alex Net, and VGG16Net are developed. The proposed approach was tested on publicly available image datasets (CT, and X-Ray image dataset), and the results showed classification accuracy, sensitivity, and specificity of 98.60%, 98.40%, and 98.50% for the X-Ray image dataset, respectively, and 98.80%, 98.50%, 98.40% for the CT scans dataset, respectively. Overall, the obtained results highlight the advantages of the image enhancement model as a first step in processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助shy采纳,获得10
1秒前
于鱼发布了新的文献求助10
2秒前
4秒前
lingyan发布了新的文献求助10
8秒前
自信乐枫完成签到,获得积分10
9秒前
kk完成签到,获得积分10
9秒前
13秒前
14秒前
礼岁岁完成签到 ,获得积分10
15秒前
罗莹完成签到 ,获得积分10
15秒前
lnx完成签到,获得积分10
15秒前
17秒前
19秒前
Ususl发布了新的文献求助10
19秒前
今夜有雨完成签到 ,获得积分10
20秒前
小白发布了新的文献求助10
21秒前
21秒前
柠木完成签到 ,获得积分10
22秒前
所所应助结实万仇采纳,获得10
26秒前
28秒前
33秒前
lkxpsy完成签到 ,获得积分10
33秒前
meow完成签到 ,获得积分10
35秒前
35秒前
cherry bomb完成签到,获得积分10
35秒前
嘿嘿应助科研通管家采纳,获得10
35秒前
顾矜应助科研通管家采纳,获得10
35秒前
35秒前
今后应助科研通管家采纳,获得10
36秒前
慕青应助科研通管家采纳,获得10
36秒前
VDC应助科研通管家采纳,获得30
36秒前
852应助科研通管家采纳,获得10
36秒前
VDC应助科研通管家采纳,获得30
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
嘿嘿应助科研通管家采纳,获得10
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
英俊的铭应助科研通管家采纳,获得10
36秒前
38秒前
昏睡的幻露完成签到 ,获得积分10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590129
求助须知:如何正确求助?哪些是违规求助? 4674579
关于积分的说明 14794548
捐赠科研通 4630299
什么是DOI,文献DOI怎么找? 2532556
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571