亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale Self-Supervised Learning for Longitudinal Lesion Tracking with Optional Supervision

计算机科学 人工智能 任务(项目管理) 工作流程 比例(比率) 匹配(统计) 模式 跟踪(教育) 相似性(几何) 模式识别(心理学) 计算机视觉 机器学习 图像(数学) 医学 病理 心理学 教育学 社会科学 物理 管理 量子力学 数据库 社会学 经济
作者
Anamaria Vizitiu,Antonia Teodora Mohaiu,Ioan M. Popdan,Abishek Balachandran,Florin C. Ghesu,Dorin Comaniciu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 573-582
标识
DOI:10.1007/978-3-031-43907-0_55
摘要

Longitudinal lesion or tumor tracking is an essential task in different clinical workflows, including treatment monitoring with follow-up imaging or planning of re-treatments for radiation therapy. Accurately establishing correspondence between lesions at different timepoints, recognizing new lesions or lesions that have disappeared is a tedious task that only grows in complexity as the number of lesions or timepoints increase. To address this task, we propose a generic approach based on multi-scale self-supervised learning. The multi-scale approach allows the efficient and robust learning of a similarity map between multi-timepoint image acquisitions to derive correspondence, while the self-supervised learning formulation enables the generic application to different types of lesions and image modalities. In addition, we impose optional supervision during training by leveraging tens of anatomical landmarks that can be extracted automatically. We train our approach at large scale with more than 50,000 computed tomography (CT) scans and validate it on two different applications: 1) Tracking of generic lesions based on the DeepLesion dataset, including liver tumors, lung nodules, enlarged lymph-nodes, for which we report highest matching accuracy of 92%, with localization accuracy that is nearly 10% higher than the state-of-the-art; and 2) Tracking of lung nodules based on the NLST dataset for which we achieve similarly high performance. In addition, we include an error analysis based on expert radiologist feedback, and discuss next steps as we plan to scale our system across more applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳佟人达发布了新的文献求助30
3秒前
3秒前
4秒前
Ade阿德完成签到 ,获得积分10
18秒前
科研通AI5应助dd采纳,获得10
19秒前
唠叨的若男完成签到,获得积分10
19秒前
科研通AI5应助skinny采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
John完成签到,获得积分10
27秒前
丰富源智完成签到,获得积分10
37秒前
大模型应助成就的发箍采纳,获得10
38秒前
科研通AI5应助机灵哈密瓜采纳,获得10
39秒前
伊笙完成签到 ,获得积分10
43秒前
43秒前
47秒前
完美世界应助LHS采纳,获得10
48秒前
48秒前
麒麟发布了新的文献求助10
49秒前
50秒前
愉快竺发布了新的文献求助10
52秒前
53秒前
南山荣熙发布了新的文献求助10
54秒前
55秒前
一先生发布了新的文献求助10
58秒前
1分钟前
1分钟前
麒麟完成签到,获得积分10
1分钟前
狂炫一大晚完成签到 ,获得积分10
1分钟前
ly发布了新的文献求助10
1分钟前
幸运星发布了新的文献求助10
1分钟前
1分钟前
不开心就吃糖完成签到 ,获得积分10
1分钟前
SS完成签到,获得积分0
1分钟前
ly完成签到,获得积分10
1分钟前
呆萌小鸭子完成签到 ,获得积分10
1分钟前
1分钟前
酷波er应助务实澜采纳,获得10
1分钟前
Dreamy完成签到,获得积分10
1分钟前
Dreamy发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121554
关于积分的说明 9347855
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273