Dual Arbitrary Scale Super-Resolution for Multi-contrast MRI

计算机科学 对比度(视觉) 人工智能 计算机视觉 比例(比率) 图像分辨率 模式识别(心理学) 量子力学 物理
作者
Jiamiao Zhang,Yichen Chi,Jun Lv,Wenming Yang,Yapeng Tian
出处
期刊:Lecture Notes in Computer Science 卷期号:: 282-292 被引量:2
标识
DOI:10.1007/978-3-031-43999-5_27
摘要

Limited by imaging systems, the reconstruction of Magnetic Resonance Imaging (MRI) images from partial measurement is essential to medical imaging research. Benefiting from the diverse and complementary information of multi-contrast MR images in different imaging modalities, multi-contrast Super-Resolution (SR) reconstruction is promising to yield SR images with higher quality. In the medical scenario, to fully visualize the lesion, radiologists are accustomed to zooming the MR images at arbitrary scales rather than using a fixed scale, as used by most MRI SR methods. In addition, existing multi-contrast MRI SR methods often require a fixed resolution for the reference image, which makes acquiring reference images difficult and imposes limitations on arbitrary scale SR tasks. To address these issues, we proposed an implicit neural representations based dual-arbitrary multi-contrast MRI super-resolution method, called Dual-ArbNet. First, we decouple the resolution of the target and reference images by a feature encoder, enabling the network to input target and reference images at arbitrary scales. Then, an implicit fusion decoder fuses the multi-contrast features and uses an Implicit Decoding Function (IDF) to obtain the final MRI SR results. Furthermore, we introduce a curriculum learning strategy to train our network, which improves the generalization and performance of our Dual-ArbNet. Extensive experiments in two public MRI datasets demonstrate that our method outperforms state-of-the-art approaches under different scale factors and has great potential in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
超帅的啤酒完成签到,获得积分10
1秒前
qhg发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
顺顺黎黎发布了新的文献求助10
1秒前
伶俐的语蕊完成签到,获得积分20
2秒前
2秒前
叶许完成签到 ,获得积分10
2秒前
2秒前
盛世嫡妃发布了新的文献求助10
2秒前
领导范儿应助1234采纳,获得20
2秒前
4秒前
踏实十三发布了新的文献求助10
4秒前
Akim应助mz采纳,获得10
4秒前
董先生发布了新的文献求助10
4秒前
蚊香液发布了新的文献求助10
4秒前
鲸鱼发布了新的文献求助10
4秒前
4秒前
是希希啊a发布了新的文献求助10
5秒前
FashionBoy应助栗子采纳,获得10
5秒前
ky幻影完成签到,获得积分10
5秒前
dddd发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助里昂采纳,获得30
5秒前
6秒前
枯草芽孢完成签到,获得积分10
6秒前
li完成签到,获得积分20
6秒前
赘婿应助Spike采纳,获得10
6秒前
饭饭大王完成签到,获得积分10
6秒前
SY发布了新的文献求助10
7秒前
7秒前
7秒前
诚心寄灵完成签到,获得积分10
8秒前
8秒前
Halari发布了新的文献求助10
8秒前
8秒前
zoe11完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482