Dual Arbitrary Scale Super-Resolution for Multi-contrast MRI

计算机科学 对比度(视觉) 人工智能 计算机视觉 比例(比率) 图像分辨率 模式识别(心理学) 量子力学 物理
作者
Jiamiao Zhang,Yichen Chi,Jun Lv,Wenming Yang,Yapeng Tian
出处
期刊:Lecture Notes in Computer Science 卷期号:: 282-292 被引量:2
标识
DOI:10.1007/978-3-031-43999-5_27
摘要

Limited by imaging systems, the reconstruction of Magnetic Resonance Imaging (MRI) images from partial measurement is essential to medical imaging research. Benefiting from the diverse and complementary information of multi-contrast MR images in different imaging modalities, multi-contrast Super-Resolution (SR) reconstruction is promising to yield SR images with higher quality. In the medical scenario, to fully visualize the lesion, radiologists are accustomed to zooming the MR images at arbitrary scales rather than using a fixed scale, as used by most MRI SR methods. In addition, existing multi-contrast MRI SR methods often require a fixed resolution for the reference image, which makes acquiring reference images difficult and imposes limitations on arbitrary scale SR tasks. To address these issues, we proposed an implicit neural representations based dual-arbitrary multi-contrast MRI super-resolution method, called Dual-ArbNet. First, we decouple the resolution of the target and reference images by a feature encoder, enabling the network to input target and reference images at arbitrary scales. Then, an implicit fusion decoder fuses the multi-contrast features and uses an Implicit Decoding Function (IDF) to obtain the final MRI SR results. Furthermore, we introduce a curriculum learning strategy to train our network, which improves the generalization and performance of our Dual-ArbNet. Extensive experiments in two public MRI datasets demonstrate that our method outperforms state-of-the-art approaches under different scale factors and has great potential in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助章家炜采纳,获得10
1秒前
Gauss应助张小汉采纳,获得30
3秒前
嘻嘻发布了新的文献求助10
3秒前
杰哥完成签到 ,获得积分10
4秒前
Ava应助赵小可可可可采纳,获得10
4秒前
科研通AI5应助kento采纳,获得30
5秒前
nkmenghan发布了新的文献求助10
6秒前
9秒前
redondo10完成签到,获得积分0
10秒前
11秒前
乔qiao发布了新的文献求助30
14秒前
WZ0904发布了新的文献求助10
15秒前
poegtam完成签到,获得积分10
16秒前
大胆盼兰发布了新的文献求助10
17秒前
wuyan204完成签到 ,获得积分10
18秒前
windcreator完成签到,获得积分10
18秒前
redondo5完成签到,获得积分0
18秒前
wangrswjx完成签到 ,获得积分10
18秒前
科研通AI5应助su采纳,获得10
18秒前
21秒前
23秒前
小二郎应助嘻嘻采纳,获得10
23秒前
yun完成签到 ,获得积分10
24秒前
24秒前
26秒前
健忘曼冬发布了新的文献求助10
26秒前
redondo完成签到,获得积分10
26秒前
momo完成签到,获得积分10
27秒前
希望天下0贩的0应助meng采纳,获得10
28秒前
龙歪歪发布了新的文献求助10
29秒前
29秒前
暮城完成签到,获得积分10
29秒前
30秒前
云墨完成签到 ,获得积分10
30秒前
32秒前
33秒前
Akim应助caoyy采纳,获得10
33秒前
34秒前
科研通AI2S应助DreamMaker采纳,获得10
34秒前
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849