Dual Arbitrary Scale Super-Resolution for Multi-contrast MRI

计算机科学 对比度(视觉) 人工智能 计算机视觉 比例(比率) 图像分辨率 模式识别(心理学) 量子力学 物理
作者
Jiamiao Zhang,Yichen Chi,Jun Lv,Wenming Yang,Yapeng Tian
出处
期刊:Lecture Notes in Computer Science 卷期号:: 282-292 被引量:2
标识
DOI:10.1007/978-3-031-43999-5_27
摘要

Limited by imaging systems, the reconstruction of Magnetic Resonance Imaging (MRI) images from partial measurement is essential to medical imaging research. Benefiting from the diverse and complementary information of multi-contrast MR images in different imaging modalities, multi-contrast Super-Resolution (SR) reconstruction is promising to yield SR images with higher quality. In the medical scenario, to fully visualize the lesion, radiologists are accustomed to zooming the MR images at arbitrary scales rather than using a fixed scale, as used by most MRI SR methods. In addition, existing multi-contrast MRI SR methods often require a fixed resolution for the reference image, which makes acquiring reference images difficult and imposes limitations on arbitrary scale SR tasks. To address these issues, we proposed an implicit neural representations based dual-arbitrary multi-contrast MRI super-resolution method, called Dual-ArbNet. First, we decouple the resolution of the target and reference images by a feature encoder, enabling the network to input target and reference images at arbitrary scales. Then, an implicit fusion decoder fuses the multi-contrast features and uses an Implicit Decoding Function (IDF) to obtain the final MRI SR results. Furthermore, we introduce a curriculum learning strategy to train our network, which improves the generalization and performance of our Dual-ArbNet. Extensive experiments in two public MRI datasets demonstrate that our method outperforms state-of-the-art approaches under different scale factors and has great potential in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
weijian完成签到,获得积分10
刚刚
大气书芹发布了新的文献求助10
刚刚
000发布了新的文献求助10
1秒前
汉堡包应助王怡采纳,获得10
1秒前
lipppfff发布了新的文献求助10
1秒前
2秒前
2秒前
行云岛发布了新的文献求助10
3秒前
3秒前
卷卷应助甜甜的冰双采纳,获得10
3秒前
余正扬完成签到 ,获得积分10
3秒前
3秒前
CipherSage应助lin采纳,获得10
3秒前
顺利的梦柏完成签到,获得积分10
4秒前
恩善完成签到,获得积分10
4秒前
CodeCraft应助爱科研的粥粥采纳,获得10
5秒前
Blues汪发布了新的文献求助10
5秒前
向雨竹发布了新的文献求助10
5秒前
冬猫完成签到,获得积分10
5秒前
王民炎发布了新的文献求助10
5秒前
烟花应助孤独的珩采纳,获得10
5秒前
YataMisaki完成签到,获得积分10
5秒前
和谐的火发布了新的文献求助10
6秒前
lee关闭了lee文献求助
6秒前
6秒前
简单的呆呆完成签到,获得积分10
7秒前
133发布了新的文献求助10
7秒前
儒雅醉冬完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
000完成签到,获得积分10
8秒前
共享精神应助zq采纳,获得10
8秒前
9秒前
Peppermint完成签到,获得积分10
9秒前
9秒前
ouou完成签到,获得积分10
10秒前
orixero应助陆山菡采纳,获得10
10秒前
白石溪完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993