Intratumor microbiome derived glycolysis-lactate signatures depicts immune heterogeneity in lung adenocarcinoma by integration of microbiomic, transcriptomic, proteomic and single-cell data

糖酵解 微生物群 肿瘤微环境 免疫系统 生物 腺癌 免疫疗法 基因签名 癌症研究 转录组 表型 肿瘤科 癌症 免疫学 医学 生物信息学 基因 新陈代谢 遗传学 内分泌学 基因表达
作者
Xiaheng Deng,Xiru Chen,Yu Luo,Jun Que,Liang Chen
出处
期刊:Frontiers in Microbiology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fmicb.2023.1202454
摘要

Introduction Microbiome plays roles in lung adenocarcinoma (LUAD) development and anti-tumor treatment efficacy. Aberrant glycolysis in tumor might promote lactate production that alter tumor microenvironment, affecting microbiome, cancer cells and immune cells. We aimed to construct intratumor microbiome score to predict prognosis of LUAD patients and thoroughly investigate glycolysis and lactate signature’s association with LUAD immune cell infiltration. Methods The Cancer Genome Atlas-LUAD (TCGA-LUAD) microbiome data was downloaded from cBioPortal and analyzed to examine its association with overall survival to create a prognostic scoring model. Gene Set Enrichment Analysis (GSEA) was used to find each group’s major mechanisms involved. Our study then investigated the glycolysis and lactate pattern in LUAD patients based on 19 genes, which were correlated with the tumor microenvironment (TME) phenotypes and immunotherapy outcomes. We developed a glycolysis-lactate risk score and signature to accurately predict TME phenotypes, prognosis, and response to immunotherapy. Results Using the univariate Cox regression analysis, the abundance of 38 genera were identified with prognostic values and a lung-resident microbial score (LMS) was then developed from the TCGA-LUAD-microbiome dataset. Glycolysis hallmark pathway was significantly enriched in high-LMS group and three distinct glycolysis-lactate patterns were generated. Patients in Cluster1 exhibited unfavorable outcomes and might be insensitive to immunotherapy. Glycolysis-lactate score was constructed for predicting prognosis with high accuracy and validated in external cohorts. Gene signature was developed and this signature was elevated in epithelial cells especially in tumor mass on single-cell level. Finally, we found that the glycolysis-lactate signature levels were consistent with the malignancy of histological subtypes. Discussion Our study demonstrated that an 18-microbe prognostic score and a 19-gene glycolysis-lactate signature for predicting prognosis of LUAD patients. Our LMS, glycolysis-lactate score and glycolysis-lactate signature have potential roles in precision therapy of LUAD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3-HP完成签到,获得积分10
刚刚
失眠的向日葵完成签到 ,获得积分10
1秒前
Baneyhua完成签到,获得积分10
1秒前
2秒前
深情安青应助默默菲音采纳,获得30
2秒前
zhouleiwang完成签到,获得积分10
3秒前
pinkdon完成签到,获得积分10
3秒前
123完成签到,获得积分0
3秒前
舒心如凡完成签到,获得积分10
3秒前
4秒前
闪蓝之光完成签到,获得积分10
6秒前
无花果应助Liang采纳,获得10
6秒前
有志者发布了新的文献求助30
7秒前
8秒前
10秒前
脑洞疼应助赵哈哈找文献采纳,获得10
12秒前
满意涵梅发布了新的文献求助10
12秒前
McSee完成签到,获得积分10
13秒前
13秒前
兰lanlan发布了新的文献求助10
15秒前
凭亿近人发布了新的文献求助10
15秒前
16秒前
16秒前
wushengdeyu完成签到,获得积分10
17秒前
YLT完成签到,获得积分10
17秒前
FOX完成签到,获得积分10
18秒前
18秒前
Liang发布了新的文献求助10
19秒前
缓慢如南应助燕子采纳,获得10
19秒前
淳于无施完成签到,获得积分10
19秒前
HM发布了新的文献求助10
20秒前
科研菜鸡完成签到 ,获得积分10
21秒前
21秒前
22秒前
rio完成签到 ,获得积分10
22秒前
盛世如愿发布了新的文献求助10
25秒前
25秒前
QMCL完成签到,获得积分10
26秒前
黑糖珍珠完成签到 ,获得积分10
29秒前
会飞的金鱼完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3567156
求助须知:如何正确求助?哪些是违规求助? 3139675
关于积分的说明 9432949
捐赠科研通 2840458
什么是DOI,文献DOI怎么找? 1561046
邀请新用户注册赠送积分活动 730189
科研通“疑难数据库(出版商)”最低求助积分说明 717869