ChatGPT-3.5 and ChatGPT-4 dermatological knowledge level based on the Specialty Certificate Examination in Dermatology

专业 证书 考试(生物学) 医学 皮肤病 临床实习 显著性差异 皮肤病科 家庭医学 计算机科学 内科学 算法 生物 古生物学
作者
Miłosz Lewandowski,Paweł Łukowicz,Dariusz Świetlik,Wioletta Barańska‐Rybak
出处
期刊:Clinical and Experimental Dermatology [Oxford University Press]
被引量:26
标识
DOI:10.1093/ced/llad255
摘要

Abstract Background The global use of artificial intelligence (AI) has the potential to revolutionize the healthcare industry. Despite the fact that AI is becoming more popular, there is still a lack of evidence on its use in dermatology. Objectives To determine the capacity of ChatGPT-3.5 and ChatGPT-4 to support dermatology knowledge and clinical decision-making in medical practice. Methods Three Specialty Certificate Examination in Dermatology tests, in English and Polish, consisting of 120 single-best-answer, multiple-choice questions each, were used to assess the performance of ChatGPT-3.5 and ChatGPT-4. Results ChatGPT-4 exceeded the 60% pass rate in every performed test, with a minimum of 80% and 70% correct answers for the English and Polish versions, respectively. ChatGPT-4 performed significantly better on each exam (P < 0.01), regardless of language, compared with ChatGPT-3.5. Furthermore, ChatGPT-4 answered clinical picture-type questions with an average accuracy of 93.0% and 84.2% for questions in English and Polish, respectively. The difference between the tests in Polish and English were not significant; however, ChatGPT-3.5 and ChatGPT-4 performed better overall in English than in Polish by an average of 8 percentage points for each test. Incorrect ChatGPT answers were highly correlated with a lower difficulty index, denoting questions of higher difficulty in most of the tests (P < 0.05). Conclusions The dermatology knowledge level of ChatGPT was high, and ChatGPT-4 performed significantly better than ChatGPT-3.5. Although the use of ChatGPT will not replace a doctor’s final decision, physicians should support the development of AI in dermatology to raise the standards of medical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tonald Yang发布了新的文献求助10
刚刚
huangbing123完成签到 ,获得积分10
刚刚
muzi完成签到,获得积分10
1秒前
ccc完成签到,获得积分10
3秒前
4秒前
Lost发布了新的文献求助10
6秒前
6秒前
吕邓宏完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
panda完成签到,获得积分10
10秒前
土豆发布了新的文献求助10
10秒前
babe发布了新的文献求助10
11秒前
lailai007发布了新的文献求助10
11秒前
李清水完成签到,获得积分10
12秒前
sixone发布了新的文献求助10
12秒前
夏侯远望发布了新的文献求助10
13秒前
生信小白完成签到,获得积分10
15秒前
15秒前
白杨发布了新的文献求助20
16秒前
李健的粉丝团团长应助sdl采纳,获得10
19秒前
聪慧的小土豆完成签到 ,获得积分10
19秒前
SYLH应助吴海彤采纳,获得10
20秒前
高贵的冷风完成签到,获得积分20
21秒前
猫捡球完成签到,获得积分10
23秒前
妮儿发布了新的文献求助10
24秒前
一叶扁舟完成签到,获得积分10
24秒前
24秒前
夏侯远望完成签到,获得积分10
24秒前
sixone完成签到,获得积分10
26秒前
27秒前
汉堡包应助Michael_li采纳,获得30
28秒前
31秒前
等风的人发布了新的文献求助10
31秒前
32秒前
33秒前
Yasong完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
37秒前
桐桐应助陈艳林采纳,获得10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951079
求助须知:如何正确求助?哪些是违规求助? 3496471
关于积分的说明 11082339
捐赠科研通 3226915
什么是DOI,文献DOI怎么找? 1784061
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801052