Medical artificial intelligence and the black box problem: a view based on the ethical principle of “do no harm”

危害 担心 自治 特征(语言学) 上诉 恩惠 黑匣子 心理学 推定 医学伦理学 人工智能 医学 计算机科学 精神科 社会心理学 法学 政治学 焦虑 语言学 哲学
作者
Hanhui Xu,Kyle Michael James Shuttleworth
出处
期刊:Intelligent medicine [Elsevier]
卷期号:4 (1): 52-57 被引量:23
标识
DOI:10.1016/j.imed.2023.08.001
摘要

One concern about the application of medical artificial intelligence (AI) regards the "black box" feature which can only be viewed in terms of its inputs and outputs, with no way to understand the AI's algorithm. This is problematic because patients, physicians, and even designers, do not understand why or how a treatment recommendation is produced by AI technologies. One view claims that the worry about black-box medicine is unreasonable because AI systems outperform human doctors in identifying the disease. Furthermore, under the medical AI-physician-patient model, the physician can undertake the responsibility of interpreting the medical AI's diagnosis. In this article, we focus on the potential harm caused by the unexplainability feature of medical AI and try to show that such possible harm is underestimated. We will seek to contribute to the literature from three aspects. First, we will appeal to a thought experiment to show that although the medical AI systems perform better on accuracy, the harm caused by medical AI's misdiagnoses may be more serious than that caused by human doctors' misdiagnoses in some cases. Second, in patient-centred medicine, physicians are obligated to provide adequate information to their patients in medical decision-making. However, the unexplainability feature of medical AI systems would limit the patient's autonomy. Last, we try to illustrate the psychological and financial burdens that may be caused by the unexplainablity feature of medical AI systems, which seems to be ignored by the previous ethical discussions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗暴的大门完成签到 ,获得积分10
刚刚
小葛完成签到,获得积分10
1秒前
ayayaya完成签到 ,获得积分10
1秒前
子不语完成签到,获得积分0
1秒前
狮子座发布了新的文献求助10
1秒前
风趣的小甜瓜完成签到,获得积分10
2秒前
2秒前
阔达以山应助哈哈采纳,获得10
3秒前
大个应助严笑容采纳,获得10
4秒前
4秒前
秋问萍完成签到 ,获得积分10
4秒前
老胡给我鼠完成签到,获得积分10
4秒前
科研通AI5应助Xu采纳,获得10
5秒前
情怀应助Drake采纳,获得10
5秒前
6秒前
7秒前
qiany完成签到,获得积分20
8秒前
8秒前
JamesPei应助狮子座采纳,获得10
9秒前
111驳回了小蘑菇应助
9秒前
9秒前
共享精神应助科研通管家采纳,获得10
10秒前
山花浪漫应助科研通管家采纳,获得30
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
劲秉应助科研通管家采纳,获得30
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
天天快乐应助沐沐羚采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
劲秉应助科研通管家采纳,获得20
11秒前
大个应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
11秒前
NBS完成签到 ,获得积分10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794