MT-FiST: A Multi-Task Fine-grained Spatial-Temporal Framework for Surgical Action Triplet Recognition

计算机科学 拳头 背景(考古学) 判别式 人工智能 任务(项目管理) 动作(物理) 模式识别(心理学) 机器学习 自然语言处理 生理学 古生物学 物理 管理 量子力学 经济 生物
作者
Yuchong Li,Xia Tong,Han Luo,Baochun He,Fucang Jia
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 4983-4994
标识
DOI:10.1109/jbhi.2023.3299321
摘要

Surgical action triplet recognition plays a significant role in helping surgeons facilitate scene analysis and decision-making in computer-assisted surgeries. Compared to traditional context-aware tasks such as phase recognition, surgical action triplets, comprising the instrument, verb, and target, can offer more comprehensive and detailed information. However, current triplet recognition methods fall short in distinguishing the fine-grained subclasses and disregard temporal correlation in action triplets. In this article, we propose a multi-task fine-grained spatial-temporal framework for surgical action triplet recognition named MT-FiST. The proposed method utilizes a multi-label mutual channel loss, which consists of diversity and discriminative components. This loss function decouples global task features into class-aligned features, enabling the learning of more local details from the surgical scene. The proposed framework utilizes partial shared-parameters LSTM units to capture temporal correlations between adjacent frames. We conducted experiments on the CholecT50 dataset proposed in the MICCAI 2021 Surgical Action Triplet Recognition Challenge. Our framework is evaluated on the private test set of the challenge to ensure fair comparisons. Our model apparently outperformed state-of-the-art models in instrument, verb, target, and action triplet recognition tasks, with mAPs of 82.1% (+4.6%), 51.5% (+4.0%), 45.50% (+7.8%), and 35.8% (+3.1%), respectively. The proposed MT-FiST boosts the recognition of surgical action triplets in a context-aware surgical assistant system, further solving multi-task recognition by effective temporal aggregation and fine-grained features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助wjxdsg采纳,获得10
刚刚
慕青应助Rsoup采纳,获得10
刚刚
隐形曼青应助Xide采纳,获得10
1秒前
1秒前
张小央完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
silver完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
情怀应助whq采纳,获得10
4秒前
YingxueRen发布了新的文献求助10
5秒前
洞庭湖人完成签到,获得积分10
5秒前
洞悉发布了新的文献求助10
5秒前
洞悉发布了新的文献求助10
5秒前
洞悉发布了新的文献求助10
5秒前
典雅的芮完成签到,获得积分20
6秒前
聪明的青寒完成签到 ,获得积分10
7秒前
7秒前
诗轩发布了新的文献求助10
7秒前
liyuxuan发布了新的文献求助10
7秒前
8秒前
华生发布了新的文献求助10
8秒前
8秒前
鹿c3完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
cccui发布了新的文献求助10
10秒前
木木发布了新的文献求助10
10秒前
微毒麻醉完成签到,获得积分10
10秒前
FashionBoy应助满意的不二采纳,获得10
11秒前
共享精神应助hunizimiaomiao采纳,获得10
11秒前
顾矜应助liyuxuan采纳,获得10
12秒前
WHY发布了新的文献求助10
13秒前
皮皮完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447957
求助须知:如何正确求助?哪些是违规求助? 3043737
关于积分的说明 8995863
捐赠科研通 2732154
什么是DOI,文献DOI怎么找? 1498672
科研通“疑难数据库(出版商)”最低求助积分说明 692878
邀请新用户注册赠送积分活动 690677