Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol

化学 催化作用 电化学 密度泛函理论 法拉第效率 乙醇 氧化还原 无机化学 电催化剂 选择性 化学工程 物理化学 电极 有机化学 计算化学 工程类
作者
Wei Xia,Yijun Xie,Shuaiqiang Jia,Shitao Han,Ruijuan Qi,Tao Chen,Xueqing Xing,Ting Yao,Dawei Zhou,Xue Dong,Jianxin Zhai,Jingjing Li,Jianping He,Dong Jiang,Yusuke Yamauchi,Mingyuan He,Haihong Wu,Buxing Han
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (31): 17253-17264 被引量:120
标识
DOI:10.1021/jacs.3c04612
摘要

The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu-N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm-2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu-N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu-N3 sites with a short distance could promote the C-C coupling synergistically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xg发布了新的文献求助10
1秒前
看看发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
Annie完成签到,获得积分10
3秒前
3秒前
通~发布了新的文献求助30
4秒前
4秒前
雨雾发布了新的文献求助10
5秒前
daiyapeng完成签到,获得积分10
5秒前
ivy应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
NN应助科研通管家采纳,获得10
6秒前
36456657应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
Hello应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
NN应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
36456657应助科研通管家采纳,获得10
7秒前
NN应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
NN应助科研通管家采纳,获得10
7秒前
7秒前
赘婿应助科研通管家采纳,获得30
7秒前
7秒前
shouyu29应助科研通管家采纳,获得10
7秒前
7秒前
顾闭月发布了新的文献求助10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794