Adjacent Copper Single Atoms Promote C–C Coupling in Electrochemical CO2 Reduction for the Efficient Conversion of Ethanol

化学 催化作用 电化学 密度泛函理论 法拉第效率 乙醇 氧化还原 无机化学 电催化剂 选择性 化学工程 物理化学 电极 有机化学 计算化学 工程类
作者
Wei Xia,Yijun Xie,Shuaiqiang Jia,Shitao Han,Ruijuan Qi,Tao Chen,Xueqing Xing,Ting Yao,Dawei Zhou,Xue Dong,Jianxin Zhai,Jingjing Li,Jianping He,Dong Jiang,Yusuke Yamauchi,Mingyuan He,Haihong Wu,Buxing Han
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (31): 17253-17264 被引量:73
标识
DOI:10.1021/jacs.3c04612
摘要

The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu-N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm-2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu-N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu-N3 sites with a short distance could promote the C-C coupling synergistically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Syq发布了新的文献求助10
1秒前
1秒前
重要的板凳完成签到,获得积分10
1秒前
香蕉觅云应助chens627采纳,获得10
2秒前
2秒前
小帕菜完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
Akim应助木木采纳,获得10
4秒前
哈哈完成签到,获得积分10
4秒前
4秒前
鹏gg发布了新的文献求助10
4秒前
ruanyh发布了新的文献求助10
5秒前
二枫忆桑完成签到,获得积分10
5秒前
小张真的困啦完成签到,获得积分10
6秒前
zxxq1229发布了新的文献求助10
6秒前
zz发布了新的文献求助10
6秒前
慕青应助哈哈采纳,获得10
8秒前
英勇熠彤发布了新的文献求助10
8秒前
赘婿应助手术刀采纳,获得10
9秒前
9秒前
大模型应助萌新采纳,获得10
9秒前
samchen发布了新的文献求助10
9秒前
林夕发布了新的文献求助10
10秒前
薰硝壤应助小董采纳,获得10
10秒前
鹏gg完成签到,获得积分10
12秒前
honeybee完成签到,获得积分10
12秒前
Syq完成签到,获得积分10
12秒前
14秒前
REN应助方方采纳,获得20
15秒前
proteinpurify完成签到,获得积分10
16秒前
WT完成签到,获得积分20
16秒前
16秒前
bakbak完成签到,获得积分10
17秒前
糟糕的师关注了科研通微信公众号
18秒前
18秒前
Gakay完成签到,获得积分10
19秒前
。。完成签到 ,获得积分10
19秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081852
求助须知:如何正确求助?哪些是违规求助? 2734912
关于积分的说明 7534916
捐赠科研通 2384515
什么是DOI,文献DOI怎么找? 1264364
科研通“疑难数据库(出版商)”最低求助积分说明 612614
版权声明 597600