亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Thermal Error Prediction of Ball Screws in Full Time Series Using Working Condition Data Based on Mechanism and Data Hybrid-Driven Model

球(数学) 系列(地层学) 时间序列 计算机科学 机制(生物学) 滚珠丝杠 算法 数学 工程类 机器学习 机械工程 地质学 物理 几何学 古生物学 量子力学 螺母
作者
Min Wang,Wenlong Lu,Kuan Zhang,Xiaofeng Zhu,Mengqi Wang,Bo Yang,Xiangsheng Gao
标识
DOI:10.2139/ssrn.4521589
摘要

The ball screw, serving as a vital component in the feed drive systems of machine tools, is susceptible to thermal errors that significantly impact its accuracy. Nevertheless, current thermal error modeling methods for ball screws face significant challenges in achieving full time series prediction. Furthermore, these methods also impose stringent requirements for a complex temperature data collection process, which is further constrained by the compact structure of machine tools. Additionally, valuable working condition data that is readily available remains underutilized in thermal error prediction. This paper proposes a novel hybrid-driven model that combines mechanism and data driven approaches to achieve full time series thermal error prediction of ball screws. The proposed model utilizes the operating rotational speed as a key input parameter, eliminating the need for temperature collection during both the modeling stage and the compensation process. The temperature model as a mechanism-driven model based on heat transfer theory was proposed to calculate the temperature of the thermal sensitive points by utilizing operating rotational speed, and the accuracy of the model was validated through thermal characteristics experiments of ball screws under four different working conditions. The data-driven models based on different traditional neural networks are established to predict thermal errors according to the time series temperature data obtained from the temperature model, and the hyperparameters of different neural networks were optimized by Beetle Antennae Search (BAS). Comparative analysis among different neural network-based hybrid-driven models reveals that the BAS-CNN model consistently exhibits lower absolute errors, predominantly below 10μm, as well as lower root mean squared error (RMSE) and mean absolute error (MAE) values in each working condition. The BAS-CNN model, within the hybrid-driven model framework, proves to be better suited for full-time series prediction of thermal errors in ball screws. It serves as a foundation for thermal error compensation by utilizing working condition data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
脑洞疼应助我喜欢下雪采纳,获得10
1分钟前
Akim应助伶俐的觅儿采纳,获得10
1分钟前
orixero应助机灵的幼菱采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
yuyu完成签到,获得积分10
2分钟前
阿司匹林完成签到 ,获得积分10
2分钟前
maher发布了新的文献求助20
3分钟前
3分钟前
学术混子发布了新的文献求助10
3分钟前
hihi完成签到,获得积分10
3分钟前
3分钟前
月牙儿完成签到,获得积分20
3分钟前
月牙儿发布了新的文献求助30
3分钟前
橘子猫完成签到,获得积分10
3分钟前
机灵的幼菱完成签到,获得积分10
3分钟前
xiaolang2004完成签到,获得积分10
3分钟前
共享精神应助月牙儿采纳,获得10
4分钟前
4分钟前
坦率若魔发布了新的文献求助10
4分钟前
忧郁如柏完成签到,获得积分10
4分钟前
yummytaro完成签到,获得积分10
4分钟前
zs完成签到 ,获得积分10
5分钟前
奋斗的从梦完成签到,获得积分20
5分钟前
5分钟前
DYXX完成签到 ,获得积分10
6分钟前
顾矜应助科研通管家采纳,获得10
6分钟前
maher完成签到,获得积分10
6分钟前
7分钟前
caca完成签到,获得积分10
7分钟前
学术混子发布了新的文献求助10
7分钟前
7分钟前
八个猪宝贝完成签到 ,获得积分10
7分钟前
香蕉觅云应助我喜欢下雪采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746083
求助须知:如何正确求助?哪些是违规求助? 3288980
关于积分的说明 10061615
捐赠科研通 3005242
什么是DOI,文献DOI怎么找? 1650144
邀请新用户注册赠送积分活动 785740
科研通“疑难数据库(出版商)”最低求助积分说明 751242