An efficient and invertible machine learning-driven multi-objective optimization architecture for light olefins separation system

替代模型 计算机科学 灵活性(工程) 分类 过程(计算) 遗传算法 接口(物质) 数学优化 建筑 人工智能 算法 机器学习 数学 并行计算 操作系统 统计 最大气泡压力法 艺术 视觉艺术 气泡
作者
Lu Yang,Shuoshi Liu,Chenglin Chang,Siyu Yang,Weifeng Shen
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:285: 119553-119553 被引量:9
标识
DOI:10.1016/j.ces.2023.119553
摘要

The transience, cyclicity, and flexibility of process operation make the optimization of light olefins separation (LOS) system computationally intensive. An efficient and invertible architecture by incorporating machine learning techniques into optimization routines is proposed. Initially, a steady-state model of the LOS system was built allowing verification with industrial data and invocation through a COM interface. Then, artificial neuron networks (ANNs) were implemented to establish surrogate models for individual fitness calculation. Finally, to find the optimal operating parameters under the targets of energy and economy, an improved non-dominated sorting genetic algorithm was employed along with the ANN-based surrogate models. Optimization results demonstrates that the proposed architecture provides much better performance of computational efficiency with only 0.8 h, while the traditional surrogate models take more than 53 h. Furthermore, the reintroduction of optimized parameters into the LOS system model constructed by Aspen Plus V12.1 demonstrates the satisfactory fulfillment of the separation requirements and affirms the excellent invertibility of the proposed architecture. Essentially, it has been proved to be a powerful tool for multi-objective optimization that can be applied to large-scale chemical processes to derive insights for sustainable development and clean production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
HaRRy发布了新的文献求助10
3秒前
甜美念珍完成签到,获得积分10
3秒前
开心超人发布了新的文献求助20
3秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助30
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
稳重冰海发布了新的文献求助10
4秒前
OK发布了新的文献求助10
4秒前
5秒前
5秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482716
求助须知:如何正确求助?哪些是违规求助? 3072248
关于积分的说明 9126270
捐赠科研通 2764017
什么是DOI,文献DOI怎么找? 1516797
邀请新用户注册赠送积分活动 701779
科研通“疑难数据库(出版商)”最低求助积分说明 700639