Diagnosis of cryptocaryoniasis in large yellow croaker (Larimichthys crocea) by real-time object detection based on YOLOv3

人工智能 水产养殖 学习迁移 计算机科学 生物 图像(数学) 模式识别(心理学) 目标检测 计算机视觉 深度学习 渔业
作者
Liyao Zhou,Xiao Xie,Linhua Jiang,Kurt Buchmann,Fei Yin
出处
期刊:Aquaculture [Elsevier]
卷期号:581: 740418-740418 被引量:1
标识
DOI:10.1016/j.aquaculture.2023.740418
摘要

With the introduction and deepening of the concept of sustainable aquaculture, the traditional aquaculture practices are gradually being supplemented and even replaced by advanced systems based on new technology. We here present an automated diagnostic method for diagnosis of cryptocaryoniasis in industrial marine aquaculture. It is based on computer image recognition technology targeting the typical clinical disease sign, white skin spots. A total of 800 images of healthy (400) and Cryptocaryon irritans infected (400) large yellow croaker (Larimichthys crocea) were obtained by cameras, and each type of image was enhanced to 1000. Based on the algorithm YOLOv3, the weights of the trained model yolov3.pt. were used to perform transfer learning on the enhanced image data set to establish the diagnosis model YOLOv3 of cryptocaryoniasis of L. crocea. Then, a visual real-time monitoring system for cryptocaryoniasis was developed. The results show that transfer learning could be well-applied to the training of the cryptocaryoniasis detection model. The accuracy of the final model was about 2% higher than that of the source model (average accuracy of YOLOv3 was 92%, recognition speed 36 frames/s). The algorithm YOLOv3 allows effective discrimination and recognition of cryptocaryoniasis in large yellow croaker. The visual real-time monitoring system allows the automatic and accurate diagnosis of cryptocaryoniasis in L. crocea aquaculture. The results illustrate the applicability of artificial intelligence for reduction of manpower expenditure in diagnostic work, shortening of detection time and elevation of accuracy and timeliness of problem recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hou完成签到 ,获得积分10
1秒前
平淡南霜完成签到,获得积分10
1秒前
摇不滚摇滚完成签到 ,获得积分10
1秒前
2秒前
细心可乐完成签到 ,获得积分10
3秒前
fbwg完成签到 ,获得积分10
3秒前
牛马打工人关注了科研通微信公众号
3秒前
枝桠完成签到,获得积分10
3秒前
浪而而发布了新的文献求助10
5秒前
彩色完成签到,获得积分10
5秒前
孤独梦柏完成签到,获得积分10
7秒前
不想长大完成签到 ,获得积分10
9秒前
黑色幽默完成签到 ,获得积分10
10秒前
桂花完成签到 ,获得积分10
10秒前
11秒前
kobe完成签到,获得积分10
11秒前
英俊的含蕾完成签到 ,获得积分10
15秒前
小绵羊完成签到,获得积分20
15秒前
Vincent完成签到,获得积分10
16秒前
jackie完成签到,获得积分10
17秒前
wwm98656完成签到,获得积分10
17秒前
17秒前
槑槑完成签到 ,获得积分10
17秒前
汉堡包应助默默采纳,获得10
18秒前
taoli完成签到,获得积分20
18秒前
迅速的念芹完成签到 ,获得积分10
19秒前
19秒前
斑鸠津发布了新的文献求助10
22秒前
科研文献搬运工完成签到 ,获得积分0
22秒前
lhl完成签到,获得积分10
23秒前
ethan2801完成签到,获得积分10
23秒前
图苏发布了新的文献求助10
24秒前
ColdPomelo完成签到,获得积分10
24秒前
hwzhou10完成签到,获得积分10
25秒前
76完成签到,获得积分10
25秒前
yuan完成签到,获得积分10
25秒前
情怀应助taoli采纳,获得10
26秒前
joy完成签到,获得积分10
26秒前
Lucas应助浪而而采纳,获得10
26秒前
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565