MOID: Many-to-One Patent Graph Embedding Base Infringement Detection Model

专利侵权 嵌入 计算机科学 模棱两可 图形 构造(python库) 钥匙(锁) 人工智能 计算机安全 理论计算机科学 知识产权 程序设计语言 操作系统
作者
Weidong Liu,Fei Li,Senjun Pei,Chunming Cheng
出处
期刊:International Journal of Software Engineering and Knowledge Engineering [World Scientific]
卷期号:34 (03): 449-465
标识
DOI:10.1142/s0218194023420019
摘要

With the increasing number of patent applications over the years, instances of patent infringement cases have become more frequent. However, traditional manual patent infringement detection models are no longer suitable for large-scale infringement detection. Existing automated models mainly focus on detecting one-to-one patent infringements, but neglect the many-to-one scenarios. The many-to-one patent infringement detection model faces some major challenges. First, the diversity of patent domains, complexity of content and ambiguity of features make it difficult to extract and represent patent features. Second, patent infringement detection relies on the correlation between patents and the comparison of contextual information as the key factors, but modeling the process and drawing conclusions present challenges. To address these challenges, we propose a many-to-one patent graph (MPG) embedding base infringement detection model. Our model extracts the relationship between keywords and patents, as well as association relation between keywords from many-to-one patent texts (MPTs), to construct a MPG. We obtain patent infringement features through graph embedding of MPG. By using these embedding features as input, the many-to-one infringement detection (MOID) model outputs the conclusion on whether a patent is infringed or not. The comparative experimental results indicate that our model improves accuracy, precision and F-measure by 3.81%, 11.82% and 5.37%, respectively, when compared to the state-of-the-art method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
刚刚
可爱的函函应助hu采纳,获得10
刚刚
刚刚
我测你码关注了科研通微信公众号
1秒前
下课了吧发布了新的文献求助10
1秒前
jy发布了新的文献求助10
1秒前
绘梨衣完成签到,获得积分10
2秒前
数据线完成签到,获得积分10
2秒前
完美世界应助甜甜的难敌采纳,获得30
3秒前
满堂花醉三千客完成签到 ,获得积分10
3秒前
3秒前
3秒前
gao完成签到,获得积分10
4秒前
LiuRuizhe完成签到,获得积分10
4秒前
绘梨衣发布了新的文献求助10
4秒前
4秒前
5秒前
淡定紫菱发布了新的文献求助10
6秒前
李繁蕊发布了新的文献求助10
8秒前
万能图书馆应助愉快寄真采纳,获得10
8秒前
Rrr发布了新的文献求助10
8秒前
9秒前
9秒前
高兴藏花发布了新的文献求助10
9秒前
10秒前
顾闭月发布了新的文献求助10
12秒前
励志小薛完成签到,获得积分20
13秒前
doudou完成签到,获得积分10
13秒前
14秒前
Ting完成签到,获得积分10
15秒前
高兴藏花完成签到 ,获得积分20
15秒前
健忘的沛蓝完成签到 ,获得积分10
15秒前
clear发布了新的文献求助10
16秒前
16秒前
感动傀斗完成签到,获得积分10
16秒前
眼睛大的小鸽子完成签到 ,获得积分10
16秒前
hu完成签到,获得积分10
16秒前
科研通AI5应助顺顺采纳,获得10
16秒前
思源应助shengChen采纳,获得10
17秒前
宁静致远发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794