MOID: Many-to-One Patent Graph Embedding Base Infringement Detection Model

专利侵权 嵌入 计算机科学 模棱两可 图形 构造(python库) 钥匙(锁) 人工智能 计算机安全 理论计算机科学 知识产权 操作系统 程序设计语言
作者
Weidong Liu,Fei Li,Senjun Pei,Chunming Cheng
出处
期刊:International Journal of Software Engineering and Knowledge Engineering [World Scientific]
卷期号:34 (03): 449-465
标识
DOI:10.1142/s0218194023420019
摘要

With the increasing number of patent applications over the years, instances of patent infringement cases have become more frequent. However, traditional manual patent infringement detection models are no longer suitable for large-scale infringement detection. Existing automated models mainly focus on detecting one-to-one patent infringements, but neglect the many-to-one scenarios. The many-to-one patent infringement detection model faces some major challenges. First, the diversity of patent domains, complexity of content and ambiguity of features make it difficult to extract and represent patent features. Second, patent infringement detection relies on the correlation between patents and the comparison of contextual information as the key factors, but modeling the process and drawing conclusions present challenges. To address these challenges, we propose a many-to-one patent graph (MPG) embedding base infringement detection model. Our model extracts the relationship between keywords and patents, as well as association relation between keywords from many-to-one patent texts (MPTs), to construct a MPG. We obtain patent infringement features through graph embedding of MPG. By using these embedding features as input, the many-to-one infringement detection (MOID) model outputs the conclusion on whether a patent is infringed or not. The comparative experimental results indicate that our model improves accuracy, precision and F-measure by 3.81%, 11.82% and 5.37%, respectively, when compared to the state-of-the-art method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
145263完成签到,获得积分10
刚刚
1秒前
Hammery完成签到,获得积分20
1秒前
1秒前
深情安青应助kcp采纳,获得10
1秒前
1秒前
啊啊啊发布了新的文献求助10
2秒前
sc发布了新的文献求助10
2秒前
yy发布了新的文献求助30
2秒前
无名氏发布了新的文献求助10
2秒前
3秒前
artoria完成签到,获得积分10
3秒前
cc关闭了cc文献求助
3秒前
VDoo完成签到,获得积分10
3秒前
4秒前
4秒前
踏实口红完成签到,获得积分10
4秒前
失眠的煎饼完成签到,获得积分20
5秒前
xide发布了新的文献求助10
5秒前
haha发布了新的文献求助10
5秒前
霸的彤完成签到,获得积分10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
村上种树发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
玉米完成签到,获得积分10
8秒前
8秒前
iNk发布了新的文献求助30
9秒前
霸的彤发布了新的文献求助10
9秒前
科研通AI6应助michael采纳,获得30
9秒前
10秒前
10秒前
10秒前
M123完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667488
求助须知:如何正确求助?哪些是违规求助? 4886195
关于积分的说明 15120469
捐赠科研通 4826311
什么是DOI,文献DOI怎么找? 2583920
邀请新用户注册赠送积分活动 1537973
关于科研通互助平台的介绍 1496095