Optimization of sports effect evaluation technology from random forest algorithm and elastic network algorithm

随机森林 算法 支持向量机 计算机科学 Lasso(编程语言) 机器学习 特征选择 弹性网正则化 人工智能 数据挖掘 万维网
作者
Caixia Wang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (10): e0292557-e0292557 被引量:3
标识
DOI:10.1371/journal.pone.0292557
摘要

This study leverages advanced data mining and machine learning techniques to delve deeper into the impact of sports activities on physical health and provide a scientific foundation for informed sports selection and health promotion. Guided by the Elastic Net algorithm, a sports performance assessment model is meticulously constructed. In contrast to the conventional Least Absolute Shrinkage and Selection Operator (Lasso) algorithm, this model seeks to elucidate the factors influencing physical health indicators due to sports activities. Additionally, the incorporation of the Random Forest algorithm facilitates a comprehensive evaluation of sports performance across distinct dimensions: wrestling-type sports, soccer-type sports, skill-based sports, and school physical education. Employing the Top-K criterion for evaluation and juxtaposing it with the high-performance Support Vector Machine (SVM) algorithm, the accuracy is scrutinized under three distinct criteria: Top-3, Top-5, and Top-10. The pivotal innovation of this study resides in the amalgamation of the Elastic Net and Random Forest algorithms, permitting a holistic contemplation of the influencing factors of diverse sports activities on physical health indicators. Through this integrated methodology, the research achieves a more precise assessment of the effects of sports activities, unveiling a range of impacts various sports have on physical health. Consequently, a more refined assessment tool for sports performance detection and health development is established. Capitalizing on the Elastic Net algorithm, this research optimizes model construction during the pivotal feature selection phase, effectively capturing the crucial influencing factors associated with different sports activities. Concurrently, the integration of the Random Forest algorithm augments the predictive prowess of the model, enabling the sports performance assessment model to comprehensively unveil the extent of impact stemming from various sports activities. This study stands as a noteworthy contribution to the arena of sports performance assessment, offering substantial insights and advancements to both sports health and research methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早川完成签到 ,获得积分10
1秒前
拼搏语薇完成签到,获得积分10
1秒前
科研通AI5应助SCI采纳,获得10
2秒前
dling02完成签到 ,获得积分10
2秒前
2秒前
是天使呢完成签到,获得积分10
2秒前
3秒前
3秒前
内向秋寒发布了新的文献求助10
3秒前
cc发布了新的文献求助10
3秒前
ding应助zhui采纳,获得10
4秒前
drwang120完成签到 ,获得积分10
4秒前
坨坨西州完成签到,获得积分10
5秒前
海绵体宝宝应助Louise采纳,获得20
5秒前
小马甲应助lichaoyes采纳,获得10
5秒前
5秒前
6秒前
6秒前
坨坨西州发布了新的文献求助10
7秒前
彬彬发布了新的文献求助10
7秒前
大模型应助Abao采纳,获得10
7秒前
sfw驳回了苏照杭应助
8秒前
dingdong发布了新的文献求助10
8秒前
别拖延了要毕业啊完成签到,获得积分10
9秒前
9秒前
9秒前
Rrr发布了新的文献求助10
9秒前
dingdong发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
yuan发布了新的文献求助10
12秒前
13秒前
cc完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794