Optimization of sports effect evaluation technology from random forest algorithm and elastic network algorithm

随机森林 算法 支持向量机 计算机科学 Lasso(编程语言) 机器学习 特征选择 弹性网正则化 人工智能 数据挖掘 万维网
作者
Caixia Wang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (10): e0292557-e0292557 被引量:3
标识
DOI:10.1371/journal.pone.0292557
摘要

This study leverages advanced data mining and machine learning techniques to delve deeper into the impact of sports activities on physical health and provide a scientific foundation for informed sports selection and health promotion. Guided by the Elastic Net algorithm, a sports performance assessment model is meticulously constructed. In contrast to the conventional Least Absolute Shrinkage and Selection Operator (Lasso) algorithm, this model seeks to elucidate the factors influencing physical health indicators due to sports activities. Additionally, the incorporation of the Random Forest algorithm facilitates a comprehensive evaluation of sports performance across distinct dimensions: wrestling-type sports, soccer-type sports, skill-based sports, and school physical education. Employing the Top-K criterion for evaluation and juxtaposing it with the high-performance Support Vector Machine (SVM) algorithm, the accuracy is scrutinized under three distinct criteria: Top-3, Top-5, and Top-10. The pivotal innovation of this study resides in the amalgamation of the Elastic Net and Random Forest algorithms, permitting a holistic contemplation of the influencing factors of diverse sports activities on physical health indicators. Through this integrated methodology, the research achieves a more precise assessment of the effects of sports activities, unveiling a range of impacts various sports have on physical health. Consequently, a more refined assessment tool for sports performance detection and health development is established. Capitalizing on the Elastic Net algorithm, this research optimizes model construction during the pivotal feature selection phase, effectively capturing the crucial influencing factors associated with different sports activities. Concurrently, the integration of the Random Forest algorithm augments the predictive prowess of the model, enabling the sports performance assessment model to comprehensively unveil the extent of impact stemming from various sports activities. This study stands as a noteworthy contribution to the arena of sports performance assessment, offering substantial insights and advancements to both sports health and research methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjx完成签到 ,获得积分10
刚刚
刚刚
加油发布了新的文献求助10
1秒前
3秒前
罗博超发布了新的文献求助10
4秒前
yyy发布了新的文献求助20
5秒前
风趣月饼完成签到,获得积分10
6秒前
Orange应助Tristan采纳,获得10
8秒前
星辰大海应助zhy采纳,获得20
8秒前
akakns完成签到,获得积分10
9秒前
各位大牛帮帮忙完成签到 ,获得积分10
10秒前
10秒前
lzy完成签到,获得积分20
12秒前
大个应助yyy采纳,获得20
13秒前
cmq完成签到 ,获得积分10
14秒前
日富一日发布了新的文献求助20
14秒前
15秒前
16秒前
温柔沛容完成签到 ,获得积分10
17秒前
大善人完成签到,获得积分10
17秒前
科研通AI2S应助lzy采纳,获得10
18秒前
信江书院发布了新的文献求助10
20秒前
20秒前
Raynald发布了新的文献求助10
22秒前
木穹完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
26秒前
蔡从安发布了新的文献求助10
29秒前
30秒前
激昂的冬日完成签到,获得积分10
31秒前
负责丹亦发布了新的文献求助10
31秒前
顺利绮波完成签到,获得积分10
36秒前
伤心的黄焖鸡完成签到,获得积分10
36秒前
37秒前
37秒前
40秒前
聪明诗槐完成签到,获得积分10
41秒前
7766完成签到,获得积分10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352191
求助须知:如何正确求助?哪些是违规求助? 2977475
关于积分的说明 8679676
捐赠科研通 2658452
什么是DOI,文献DOI怎么找? 1455793
科研通“疑难数据库(出版商)”最低求助积分说明 674095
邀请新用户注册赠送积分活动 664651