MATT-DDI: Predicting multi-type drug-drug interactions via heterogeneous attention mechanisms

药品 计算机科学 特征(语言学) 特征向量 相似性(几何) 双线性插值 余弦相似度 人工智能 模式识别(心理学) 机器学习 计算生物学 药理学 医学 生物 哲学 语言学 图像(数学) 计算机视觉
作者
Shunfu Lin,Xueying Mao,Liang Hong,Shuangjun Lin,Dong‐Qing Wei,Yi Xiong
出处
期刊:Methods [Elsevier]
卷期号:220: 1-10
标识
DOI:10.1016/j.ymeth.2023.10.007
摘要

The joint use of multiple drugs can result in adverse drug-drug interactions (DDIs) and side effects that harm the body. Accurate identification of DDIs is crucial for avoiding accidental drug side effects and understanding potential mechanisms underlying DDIs. Several computational methods have been proposed for multi-type DDI prediction, but most rely on the similarity profiles of drugs as the drug feature vectors, which may result in information leakage and overoptimistic performance when predicting interactions between new drugs. To address this issue, we propose a novel method, MATT-DDI, for predicting multi-type DDIs based on the original feature vectors of drugs and multiple attention mechanisms. MATT-DDI consists of three main modules: the top k most similar drug pair selection module, heterogeneous attention mechanism module and multi‑type DDI prediction module. Firstly, based on the feature vector of the input drug pair (IDP), k drug pairs that are most similar to the input drug pair from the training dataset are selected according to cosine similarity between drug pairs. Then, the vectors of k selected drug pairs are averaged to obtain a new drug pair (NDP). Next, IDP and NDP are fed into heterogeneous attention modules, including scaled dot product attention and bilinear attention, to extract latent feature vectors. Finally, these latent feature vectors are taken as input of the classification module to predict DDI types. We evaluated MATT-DDI on three different tasks. The experimental results show that MATT-DDI provides better or comparable performance compared to several state-of-the-art methods, and its feasibility is supported by case studies. MATT-DDI is a robust model for predicting multi-type DDIs with excellent performance and no information leakage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_Z1WrgL完成签到,获得积分10
刚刚
lxrsee完成签到,获得积分20
1秒前
小巧的寻双完成签到,获得积分10
1秒前
Zert发布了新的文献求助10
2秒前
kkv发布了新的文献求助10
2秒前
Jasin完成签到,获得积分10
2秒前
2秒前
keke发布了新的文献求助10
3秒前
3秒前
3秒前
朽木完成签到 ,获得积分10
3秒前
4秒前
BQ发布了新的文献求助10
4秒前
4秒前
黄焖鸡完成签到 ,获得积分10
4秒前
5秒前
5秒前
彭于晏应助孔雀翎采纳,获得10
5秒前
5秒前
5秒前
Ava应助JJ采纳,获得10
5秒前
Baccano完成签到,获得积分10
6秒前
研友_VZG7GZ应助无语的百招采纳,获得10
6秒前
super完成签到,获得积分10
6秒前
WWXWWX应助能干豆芽采纳,获得10
6秒前
兴奋中道发布了新的文献求助10
6秒前
6秒前
lolo完成签到,获得积分10
7秒前
标致小甜瓜完成签到 ,获得积分10
7秒前
7秒前
契咯发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
Lucas应助美女采纳,获得10
9秒前
Yin发布了新的文献求助10
9秒前
欣慰小丸子关注了科研通微信公众号
9秒前
Ava应助大面包采纳,获得10
9秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587