MATT-DDI: Predicting multi-type drug-drug interactions via heterogeneous attention mechanisms

药品 计算机科学 特征(语言学) 特征向量 相似性(几何) 双线性插值 余弦相似度 人工智能 模式识别(心理学) 机器学习 计算生物学 药理学 医学 生物 哲学 语言学 图像(数学) 计算机视觉
作者
Shenggeng Lin,Xueying Mao,Liang Hong,Shuangjun Lin,Dong‐Qing Wei,Yi Xiong
出处
期刊:Methods [Elsevier BV]
卷期号:220: 1-10 被引量:6
标识
DOI:10.1016/j.ymeth.2023.10.007
摘要

The joint use of multiple drugs can result in adverse drug-drug interactions (DDIs) and side effects that harm the body. Accurate identification of DDIs is crucial for avoiding accidental drug side effects and understanding potential mechanisms underlying DDIs. Several computational methods have been proposed for multi-type DDI prediction, but most rely on the similarity profiles of drugs as the drug feature vectors, which may result in information leakage and overoptimistic performance when predicting interactions between new drugs. To address this issue, we propose a novel method, MATT-DDI, for predicting multi-type DDIs based on the original feature vectors of drugs and multiple attention mechanisms. MATT-DDI consists of three main modules: the top k most similar drug pair selection module, heterogeneous attention mechanism module and multi‑type DDI prediction module. Firstly, based on the feature vector of the input drug pair (IDP), k drug pairs that are most similar to the input drug pair from the training dataset are selected according to cosine similarity between drug pairs. Then, the vectors of k selected drug pairs are averaged to obtain a new drug pair (NDP). Next, IDP and NDP are fed into heterogeneous attention modules, including scaled dot product attention and bilinear attention, to extract latent feature vectors. Finally, these latent feature vectors are taken as input of the classification module to predict DDI types. We evaluated MATT-DDI on three different tasks. The experimental results show that MATT-DDI provides better or comparable performance compared to several state-of-the-art methods, and its feasibility is supported by case studies. MATT-DDI is a robust model for predicting multi-type DDIs with excellent performance and no information leakage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灼灼明月完成签到,获得积分10
刚刚
刚刚
caibai完成签到,获得积分10
刚刚
酥酥脆完成签到,获得积分10
1秒前
司空笑白完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
大力冰绿应助科研通管家采纳,获得30
1秒前
思源应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
WW完成签到,获得积分10
2秒前
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
赵宇宙发布了新的文献求助10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
核桃应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得30
2秒前
yeahyeahyeah发布了新的文献求助10
2秒前
丘比特应助科研通管家采纳,获得30
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
赵可唯发布了新的文献求助10
3秒前
共享精神应助H丶化羽采纳,获得10
3秒前
水木年华ge完成签到,获得积分10
3秒前
CasterL完成签到,获得积分10
4秒前
4秒前
lmt完成签到,获得积分10
4秒前
zbw发布了新的文献求助10
4秒前
xiaofeng发布了新的文献求助10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559435
求助须知:如何正确求助?哪些是违规求助? 3985900
关于积分的说明 12340835
捐赠科研通 3656514
什么是DOI,文献DOI怎么找? 2014495
邀请新用户注册赠送积分活动 1049235
科研通“疑难数据库(出版商)”最低求助积分说明 937558