Deep learning‐based radiomics model can predict extranodal soft tissue metastasis in gastric cancer

医学 无线电技术 队列 淋巴血管侵犯 放射科 癌症 转移 置信区间 肿瘤科 内科学
作者
Shengyuan Liu,Jingyu Deng,Di Dong,Mengjie Fang,Zhaoxiang Ye,Yanfeng Hu,Hailin Li,Lianzhen Zhong,Runnan Cao,Xun Zhao,Wenting Shang,Guoxin Li,Han Liang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 267-277 被引量:1
标识
DOI:10.1002/mp.16647
摘要

Abstract Background The potential prognostic value of extranodal soft tissue metastasis (ESTM) has been confirmed by increasing studies about gastric cancer (GC). However, the gold standard of ESTM is determined by pathologic examination after surgery, and there are no preoperative methods for assessment of ESTM yet. Purpose This multicenter study aimed to develop a deep learning‐based radiomics model to preoperatively identify ESTM and evaluate its prognostic value. Methods A total of 959 GC patients were enrolled from two centers and split into a training cohort ( N = 551) and a test cohort ( N = 236) for ESTM evaluation. Additionally, an external survival cohort ( N = 172) was included for prognostic analysis. Four models were established based on clinical characteristics and multiphase computed tomography (CT) images for preoperative identification of ESTM, including a deep learning model, a hand‐crafted radiomic model, a clinical model, and a combined model. C‐index, decision curve, and calibration curve were utilized to assess the model performances. Survival analysis was conducted to explore the ability of stratifying overall survival (OS). Results The combined model showed good discrimination of the ESTM [C‐indices (95% confidence interval, CI): 0.770 (0.729–0.812) and 0.761 (0.718–0.805) in training and test cohorts respectively], which outperformed deep learning model, radiomics model, and clinical model. The stratified analysis showed this model was not affected by patient's tumor size, the presence of lymphovascular invasion, and Lauren classification ( p < 0.05 ). Moreover, the model score showed strong consistency with the OS [C‐indices (95%CI): 0.723 (0.658–0.789, p < 0.0001 ) in the internal survival cohort and 0.715 (0.650–0.779, p < 0.0001 ) in the external survival cohort]. More interestingly, univariate analysis showed the model score was significantly associated with occult distant metastasis ( p < 0.05 ) that was missed by preoperative diagnosis. Conclusions The model combining CT images and clinical characteristics had an impressive predictive ability of both ESTM and prognosis, which has the potential to serve as an effective complement to the preoperative TNM staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
计划发布了新的文献求助10
1秒前
歪咪发布了新的文献求助10
1秒前
1秒前
刘文辉完成签到,获得积分10
1秒前
闪闪机器猫完成签到,获得积分10
1秒前
上官若男应助Tangyartie采纳,获得10
2秒前
2秒前
文献使者完成签到,获得积分10
2秒前
酷酷的笔记本完成签到,获得积分10
3秒前
3秒前
浮游应助LL采纳,获得10
3秒前
4秒前
Lazarus完成签到,获得积分10
4秒前
4秒前
欧小嘢完成签到,获得积分10
5秒前
5秒前
Akim应助润润轩轩采纳,获得10
5秒前
6秒前
6秒前
6秒前
淡淡大山完成签到,获得积分10
6秒前
NexusExplorer应助weihuang采纳,获得10
7秒前
柠檬泡芙完成签到,获得积分10
7秒前
renjh完成签到,获得积分10
7秒前
8秒前
103x发布了新的文献求助10
8秒前
91ge完成签到 ,获得积分10
8秒前
窦无剑发布了新的文献求助10
8秒前
minggalaxy007发布了新的文献求助10
8秒前
哈基米完成签到 ,获得积分10
8秒前
小罗黑的完成签到,获得积分10
8秒前
9秒前
lyl发布了新的文献求助10
9秒前
小布丁发布了新的文献求助10
9秒前
清爽逊完成签到,获得积分20
9秒前
Owen应助阿东c采纳,获得10
9秒前
蓝书签发布了新的文献求助10
9秒前
10秒前
Lwssss发布了新的文献求助10
10秒前
tana98906发布了新的文献求助10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338438
求助须知:如何正确求助?哪些是违规求助? 4475552
关于积分的说明 13928668
捐赠科研通 4370833
什么是DOI,文献DOI怎么找? 2401451
邀请新用户注册赠送积分活动 1394568
关于科研通互助平台的介绍 1366401