Deep learning‐based radiomics model can predict extranodal soft tissue metastasis in gastric cancer

医学 无线电技术 队列 淋巴血管侵犯 放射科 癌症 转移 置信区间 肿瘤科 内科学
作者
Shengyuan Liu,Jingyu Deng,Di Dong,Mengjie Fang,Zhaoxiang Ye,Yanfeng Hu,Hailin Li,Lianzhen Zhong,Runnan Cao,Xun Zhao,Wenting Shang,Guoxin Li,Han Liang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 267-277 被引量:1
标识
DOI:10.1002/mp.16647
摘要

Abstract Background The potential prognostic value of extranodal soft tissue metastasis (ESTM) has been confirmed by increasing studies about gastric cancer (GC). However, the gold standard of ESTM is determined by pathologic examination after surgery, and there are no preoperative methods for assessment of ESTM yet. Purpose This multicenter study aimed to develop a deep learning‐based radiomics model to preoperatively identify ESTM and evaluate its prognostic value. Methods A total of 959 GC patients were enrolled from two centers and split into a training cohort ( N = 551) and a test cohort ( N = 236) for ESTM evaluation. Additionally, an external survival cohort ( N = 172) was included for prognostic analysis. Four models were established based on clinical characteristics and multiphase computed tomography (CT) images for preoperative identification of ESTM, including a deep learning model, a hand‐crafted radiomic model, a clinical model, and a combined model. C‐index, decision curve, and calibration curve were utilized to assess the model performances. Survival analysis was conducted to explore the ability of stratifying overall survival (OS). Results The combined model showed good discrimination of the ESTM [C‐indices (95% confidence interval, CI): 0.770 (0.729–0.812) and 0.761 (0.718–0.805) in training and test cohorts respectively], which outperformed deep learning model, radiomics model, and clinical model. The stratified analysis showed this model was not affected by patient's tumor size, the presence of lymphovascular invasion, and Lauren classification ( p < 0.05 ). Moreover, the model score showed strong consistency with the OS [C‐indices (95%CI): 0.723 (0.658–0.789, p < 0.0001 ) in the internal survival cohort and 0.715 (0.650–0.779, p < 0.0001 ) in the external survival cohort]. More interestingly, univariate analysis showed the model score was significantly associated with occult distant metastasis ( p < 0.05 ) that was missed by preoperative diagnosis. Conclusions The model combining CT images and clinical characteristics had an impressive predictive ability of both ESTM and prognosis, which has the potential to serve as an effective complement to the preoperative TNM staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
1秒前
destiny完成签到,获得积分10
1秒前
夜幕应助科研通管家采纳,获得20
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
科研通AI6应助Ortho Wang采纳,获得10
1秒前
1秒前
局内人发布了新的文献求助10
2秒前
2秒前
yelaikuhun74发布了新的文献求助10
2秒前
花花驳回了鸣笛应助
3秒前
4秒前
lamourpp发布了新的文献求助10
4秒前
4秒前
甜蜜念真发布了新的文献求助10
4秒前
4秒前
发嗲的三德完成签到,获得积分10
5秒前
5秒前
徐徐发布了新的文献求助10
5秒前
穆清完成签到,获得积分10
5秒前
5秒前
情怀应助小蚊子采纳,获得10
6秒前
kaw完成签到,获得积分10
6秒前
北河三β发布了新的文献求助10
6秒前
英姑应助局内人采纳,获得10
6秒前
du完成签到 ,获得积分10
6秒前
老实雨莲完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
科目三应助LK5559采纳,获得10
8秒前
鸣笛应助yelaikuhun74采纳,获得10
8秒前
超级小康关注了科研通微信公众号
8秒前
8秒前
yy完成签到,获得积分10
8秒前
wucl1990完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助干净柏柳采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403