Deep learning‐based radiomics model can predict extranodal soft tissue metastasis in gastric cancer

医学 无线电技术 队列 淋巴血管侵犯 放射科 癌症 转移 置信区间 肿瘤科 内科学
作者
Shengyuan Liu,Jingyu Deng,Di Dong,Mengjie Fang,Zhaoxiang Ye,Yanfeng Hu,Hailin Li,Lianzhen Zhong,Runnan Cao,Xun Zhao,Wenting Shang,Guoxin Li,Han Liang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 267-277 被引量:1
标识
DOI:10.1002/mp.16647
摘要

Abstract Background The potential prognostic value of extranodal soft tissue metastasis (ESTM) has been confirmed by increasing studies about gastric cancer (GC). However, the gold standard of ESTM is determined by pathologic examination after surgery, and there are no preoperative methods for assessment of ESTM yet. Purpose This multicenter study aimed to develop a deep learning‐based radiomics model to preoperatively identify ESTM and evaluate its prognostic value. Methods A total of 959 GC patients were enrolled from two centers and split into a training cohort ( N = 551) and a test cohort ( N = 236) for ESTM evaluation. Additionally, an external survival cohort ( N = 172) was included for prognostic analysis. Four models were established based on clinical characteristics and multiphase computed tomography (CT) images for preoperative identification of ESTM, including a deep learning model, a hand‐crafted radiomic model, a clinical model, and a combined model. C‐index, decision curve, and calibration curve were utilized to assess the model performances. Survival analysis was conducted to explore the ability of stratifying overall survival (OS). Results The combined model showed good discrimination of the ESTM [C‐indices (95% confidence interval, CI): 0.770 (0.729–0.812) and 0.761 (0.718–0.805) in training and test cohorts respectively], which outperformed deep learning model, radiomics model, and clinical model. The stratified analysis showed this model was not affected by patient's tumor size, the presence of lymphovascular invasion, and Lauren classification ( p < 0.05 ). Moreover, the model score showed strong consistency with the OS [C‐indices (95%CI): 0.723 (0.658–0.789, p < 0.0001 ) in the internal survival cohort and 0.715 (0.650–0.779, p < 0.0001 ) in the external survival cohort]. More interestingly, univariate analysis showed the model score was significantly associated with occult distant metastasis ( p < 0.05 ) that was missed by preoperative diagnosis. Conclusions The model combining CT images and clinical characteristics had an impressive predictive ability of both ESTM and prognosis, which has the potential to serve as an effective complement to the preoperative TNM staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯氧完成签到 ,获得积分10
刚刚
cocolu应助海不扬波采纳,获得10
3秒前
cocolu应助海不扬波采纳,获得10
3秒前
cocolu应助海不扬波采纳,获得10
3秒前
cocolu应助海不扬波采纳,获得10
3秒前
4秒前
时光如梭发布了新的文献求助30
4秒前
4秒前
科研通AI2S应助fantianhui采纳,获得50
5秒前
5秒前
何何何发布了新的文献求助10
6秒前
xxxx完成签到,获得积分10
6秒前
INKMAN发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
9秒前
九九发布了新的文献求助10
10秒前
10秒前
yuyu完成签到,获得积分20
10秒前
李爱国应助geyuyang采纳,获得10
11秒前
魔幻梦菡完成签到 ,获得积分10
11秒前
沐风发布了新的文献求助10
12秒前
12秒前
领导范儿应助阿利呀采纳,获得20
13秒前
etqs24发布了新的文献求助10
13秒前
魔幻梦菡关注了科研通微信公众号
14秒前
郝靖儿发布了新的文献求助10
14秒前
15秒前
15秒前
李梦瑾发布了新的文献求助10
15秒前
骆欣怡发布了新的文献求助10
15秒前
yuyu发布了新的文献求助10
15秒前
16秒前
兴奋的小笼包完成签到,获得积分10
17秒前
自信语芹发布了新的文献求助10
17秒前
etqs24完成签到,获得积分10
20秒前
20秒前
geyuyang发布了新的文献求助10
21秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596