Deep learning‐based radiomics model can predict extranodal soft tissue metastasis in gastric cancer

医学 无线电技术 队列 淋巴血管侵犯 放射科 癌症 转移 置信区间 肿瘤科 内科学
作者
Shengyuan Liu,Jingyu Deng,Di Dong,Mengjie Fang,Zhaoxiang Ye,Yanfeng Hu,Hailin Li,Lianzhen Zhong,Runnan Cao,Xun Zhao,Wenting Shang,Guoxin Li,Han Liang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 267-277 被引量:1
标识
DOI:10.1002/mp.16647
摘要

Abstract Background The potential prognostic value of extranodal soft tissue metastasis (ESTM) has been confirmed by increasing studies about gastric cancer (GC). However, the gold standard of ESTM is determined by pathologic examination after surgery, and there are no preoperative methods for assessment of ESTM yet. Purpose This multicenter study aimed to develop a deep learning‐based radiomics model to preoperatively identify ESTM and evaluate its prognostic value. Methods A total of 959 GC patients were enrolled from two centers and split into a training cohort ( N = 551) and a test cohort ( N = 236) for ESTM evaluation. Additionally, an external survival cohort ( N = 172) was included for prognostic analysis. Four models were established based on clinical characteristics and multiphase computed tomography (CT) images for preoperative identification of ESTM, including a deep learning model, a hand‐crafted radiomic model, a clinical model, and a combined model. C‐index, decision curve, and calibration curve were utilized to assess the model performances. Survival analysis was conducted to explore the ability of stratifying overall survival (OS). Results The combined model showed good discrimination of the ESTM [C‐indices (95% confidence interval, CI): 0.770 (0.729–0.812) and 0.761 (0.718–0.805) in training and test cohorts respectively], which outperformed deep learning model, radiomics model, and clinical model. The stratified analysis showed this model was not affected by patient's tumor size, the presence of lymphovascular invasion, and Lauren classification ( p < 0.05 ). Moreover, the model score showed strong consistency with the OS [C‐indices (95%CI): 0.723 (0.658–0.789, p < 0.0001 ) in the internal survival cohort and 0.715 (0.650–0.779, p < 0.0001 ) in the external survival cohort]. More interestingly, univariate analysis showed the model score was significantly associated with occult distant metastasis ( p < 0.05 ) that was missed by preoperative diagnosis. Conclusions The model combining CT images and clinical characteristics had an impressive predictive ability of both ESTM and prognosis, which has the potential to serve as an effective complement to the preoperative TNM staging system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研通AI2S应助Hhhhhhhhhh采纳,获得30
刚刚
好久不见发布了新的文献求助10
1秒前
1秒前
1秒前
Ava应助sawyer采纳,获得10
2秒前
周子博发布了新的文献求助30
2秒前
浮游应助JTB采纳,获得10
3秒前
3秒前
万能图书馆应助潇洒天抒采纳,获得10
4秒前
Ava应助之昂采纳,获得10
4秒前
5秒前
Winy发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
团子团子猪完成签到,获得积分10
9秒前
9秒前
10秒前
高xl完成签到,获得积分10
11秒前
知安发布了新的文献求助10
11秒前
妮妮发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
sawyer发布了新的文献求助10
13秒前
14秒前
徐小赞发布了新的文献求助10
15秒前
homeostasis完成签到,获得积分20
15秒前
CodeCraft应助山君采纳,获得10
16秒前
今后应助乐多采纳,获得10
16秒前
无限白羊发布了新的文献求助10
16秒前
zx发布了新的文献求助10
16秒前
bugaboo发布了新的文献求助10
16秒前
lizhaonian发布了新的文献求助10
17秒前
科研通AI6应助lovehuahua采纳,获得10
17秒前
大个应助liangqian12345采纳,获得10
18秒前
19秒前
wanglejia完成签到,获得积分10
19秒前
20秒前
xxxxxxxxx完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498912
求助须知:如何正确求助?哪些是违规求助? 4595982
关于积分的说明 14451494
捐赠科研通 4529036
什么是DOI,文献DOI怎么找? 2481800
邀请新用户注册赠送积分活动 1465802
关于科研通互助平台的介绍 1438744