Deep learning‐based radiomics model can predict extranodal soft tissue metastasis in gastric cancer

医学 无线电技术 队列 淋巴血管侵犯 放射科 癌症 转移 置信区间 肿瘤科 内科学
作者
Shengyuan Liu,Jingyu Deng,Di Dong,Mengjie Fang,Zhaoxiang Ye,Yanfeng Hu,Hailin Li,Lianzhen Zhong,Runnan Cao,Xun Zhao,Wenting Shang,Guoxin Li,Han Liang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 267-277 被引量:1
标识
DOI:10.1002/mp.16647
摘要

Abstract Background The potential prognostic value of extranodal soft tissue metastasis (ESTM) has been confirmed by increasing studies about gastric cancer (GC). However, the gold standard of ESTM is determined by pathologic examination after surgery, and there are no preoperative methods for assessment of ESTM yet. Purpose This multicenter study aimed to develop a deep learning‐based radiomics model to preoperatively identify ESTM and evaluate its prognostic value. Methods A total of 959 GC patients were enrolled from two centers and split into a training cohort ( N = 551) and a test cohort ( N = 236) for ESTM evaluation. Additionally, an external survival cohort ( N = 172) was included for prognostic analysis. Four models were established based on clinical characteristics and multiphase computed tomography (CT) images for preoperative identification of ESTM, including a deep learning model, a hand‐crafted radiomic model, a clinical model, and a combined model. C‐index, decision curve, and calibration curve were utilized to assess the model performances. Survival analysis was conducted to explore the ability of stratifying overall survival (OS). Results The combined model showed good discrimination of the ESTM [C‐indices (95% confidence interval, CI): 0.770 (0.729–0.812) and 0.761 (0.718–0.805) in training and test cohorts respectively], which outperformed deep learning model, radiomics model, and clinical model. The stratified analysis showed this model was not affected by patient's tumor size, the presence of lymphovascular invasion, and Lauren classification ( p < 0.05 ). Moreover, the model score showed strong consistency with the OS [C‐indices (95%CI): 0.723 (0.658–0.789, p < 0.0001 ) in the internal survival cohort and 0.715 (0.650–0.779, p < 0.0001 ) in the external survival cohort]. More interestingly, univariate analysis showed the model score was significantly associated with occult distant metastasis ( p < 0.05 ) that was missed by preoperative diagnosis. Conclusions The model combining CT images and clinical characteristics had an impressive predictive ability of both ESTM and prognosis, which has the potential to serve as an effective complement to the preoperative TNM staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fzx完成签到,获得积分10
刚刚
秀丽笑容完成签到,获得积分10
2秒前
3秒前
3秒前
聪明的冬瓜完成签到,获得积分10
4秒前
fzx发布了新的文献求助10
6秒前
YMM发布了新的文献求助10
9秒前
NexusExplorer应助清新的寄翠采纳,获得10
10秒前
光亮若翠完成签到,获得积分10
15秒前
2024dsb完成签到 ,获得积分10
17秒前
17秒前
20秒前
21秒前
25秒前
27秒前
Teresa完成签到,获得积分20
27秒前
刘企盼完成签到,获得积分10
28秒前
顺利毕业应助super采纳,获得10
29秒前
明明明完成签到,获得积分10
31秒前
baobao发布了新的文献求助10
31秒前
FIN应助王欣采纳,获得10
32秒前
英姑应助义气安露采纳,获得10
32秒前
33秒前
科研通AI5应助LONG采纳,获得10
33秒前
星辰大海应助Salt采纳,获得10
34秒前
稳重奇异果应助ixueyi采纳,获得10
34秒前
聚合怪发布了新的文献求助10
38秒前
39秒前
慕青应助猫仔采纳,获得10
41秒前
Dr.Lee完成签到 ,获得积分10
41秒前
42秒前
聚合怪完成签到,获得积分20
43秒前
fzx关注了科研通微信公众号
44秒前
wangfeng007完成签到 ,获得积分10
45秒前
好大一个赣宝完成签到,获得积分10
46秒前
hailiangzheng完成签到,获得积分10
46秒前
47秒前
幸福幻灵发布了新的文献求助10
48秒前
48秒前
慕子默完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761824
求助须知:如何正确求助?哪些是违规求助? 3305615
关于积分的说明 10134845
捐赠科研通 3019634
什么是DOI,文献DOI怎么找? 1658255
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754751