清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning‐based radiomics model can predict extranodal soft tissue metastasis in gastric cancer

医学 无线电技术 队列 淋巴血管侵犯 放射科 癌症 转移 置信区间 肿瘤科 内科学
作者
Shengyuan Liu,Jingyu Deng,Di Dong,Mengjie Fang,Zhaoxiang Ye,Yanfeng Hu,Hailin Li,Lianzhen Zhong,Runnan Cao,Xun Zhao,Wenting Shang,Guoxin Li,Han Liang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 267-277 被引量:1
标识
DOI:10.1002/mp.16647
摘要

Abstract Background The potential prognostic value of extranodal soft tissue metastasis (ESTM) has been confirmed by increasing studies about gastric cancer (GC). However, the gold standard of ESTM is determined by pathologic examination after surgery, and there are no preoperative methods for assessment of ESTM yet. Purpose This multicenter study aimed to develop a deep learning‐based radiomics model to preoperatively identify ESTM and evaluate its prognostic value. Methods A total of 959 GC patients were enrolled from two centers and split into a training cohort ( N = 551) and a test cohort ( N = 236) for ESTM evaluation. Additionally, an external survival cohort ( N = 172) was included for prognostic analysis. Four models were established based on clinical characteristics and multiphase computed tomography (CT) images for preoperative identification of ESTM, including a deep learning model, a hand‐crafted radiomic model, a clinical model, and a combined model. C‐index, decision curve, and calibration curve were utilized to assess the model performances. Survival analysis was conducted to explore the ability of stratifying overall survival (OS). Results The combined model showed good discrimination of the ESTM [C‐indices (95% confidence interval, CI): 0.770 (0.729–0.812) and 0.761 (0.718–0.805) in training and test cohorts respectively], which outperformed deep learning model, radiomics model, and clinical model. The stratified analysis showed this model was not affected by patient's tumor size, the presence of lymphovascular invasion, and Lauren classification ( p < 0.05 ). Moreover, the model score showed strong consistency with the OS [C‐indices (95%CI): 0.723 (0.658–0.789, p < 0.0001 ) in the internal survival cohort and 0.715 (0.650–0.779, p < 0.0001 ) in the external survival cohort]. More interestingly, univariate analysis showed the model score was significantly associated with occult distant metastasis ( p < 0.05 ) that was missed by preoperative diagnosis. Conclusions The model combining CT images and clinical characteristics had an impressive predictive ability of both ESTM and prognosis, which has the potential to serve as an effective complement to the preoperative TNM staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃鲨鱼的小虾米完成签到 ,获得积分10
2秒前
852应助科研通管家采纳,获得10
5秒前
虎妞完成签到 ,获得积分10
17秒前
carne完成签到,获得积分10
18秒前
阜睿完成签到 ,获得积分10
20秒前
xuli21315完成签到 ,获得积分10
26秒前
Xu发布了新的文献求助10
27秒前
小羊咩完成签到 ,获得积分10
42秒前
龙猫爱看书完成签到,获得积分10
51秒前
future完成签到 ,获得积分10
51秒前
yunt完成签到 ,获得积分10
1分钟前
coding完成签到,获得积分10
1分钟前
天才小能喵完成签到 ,获得积分0
1分钟前
李哈哈完成签到,获得积分10
1分钟前
1分钟前
傻傻的哈密瓜完成签到,获得积分10
1分钟前
李哈哈发布了新的文献求助10
1分钟前
1分钟前
chengmin发布了新的文献求助20
1分钟前
背书强完成签到 ,获得积分10
1分钟前
dyw完成签到,获得积分10
1分钟前
Beyond095完成签到 ,获得积分10
1分钟前
小山己几完成签到,获得积分10
1分钟前
魔幻的妖丽完成签到 ,获得积分10
1分钟前
john完成签到 ,获得积分10
1分钟前
追寻的续完成签到 ,获得积分10
1分钟前
HY完成签到 ,获得积分10
1分钟前
烂漫的从彤完成签到,获得积分10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
丰富的慕卉完成签到,获得积分10
2分钟前
小小怪完成签到 ,获得积分10
2分钟前
lilylwy完成签到 ,获得积分0
2分钟前
称心的高丽完成签到 ,获得积分10
2分钟前
LiangRen完成签到 ,获得积分10
2分钟前
helen李完成签到 ,获得积分10
2分钟前
hhhhhyc完成签到 ,获得积分10
2分钟前
叶痕TNT完成签到 ,获得积分10
2分钟前
2分钟前
chen完成签到 ,获得积分10
2分钟前
qinghe完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5092835
求助须知:如何正确求助?哪些是违规求助? 4306660
关于积分的说明 13417038
捐赠科研通 4132718
什么是DOI,文献DOI怎么找? 2264080
邀请新用户注册赠送积分活动 1267761
关于科研通互助平台的介绍 1203472