亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning‐based radiomics model can predict extranodal soft tissue metastasis in gastric cancer

医学 无线电技术 队列 淋巴血管侵犯 放射科 癌症 转移 置信区间 肿瘤科 内科学
作者
Shengyuan Liu,Jingyu Deng,Di Dong,Mengjie Fang,Zhaoxiang Ye,Yanfeng Hu,Hailin Li,Lianzhen Zhong,Runnan Cao,Xun Zhao,Wenting Shang,Guoxin Li,Han Liang,Jie Tian
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 267-277 被引量:1
标识
DOI:10.1002/mp.16647
摘要

Abstract Background The potential prognostic value of extranodal soft tissue metastasis (ESTM) has been confirmed by increasing studies about gastric cancer (GC). However, the gold standard of ESTM is determined by pathologic examination after surgery, and there are no preoperative methods for assessment of ESTM yet. Purpose This multicenter study aimed to develop a deep learning‐based radiomics model to preoperatively identify ESTM and evaluate its prognostic value. Methods A total of 959 GC patients were enrolled from two centers and split into a training cohort ( N = 551) and a test cohort ( N = 236) for ESTM evaluation. Additionally, an external survival cohort ( N = 172) was included for prognostic analysis. Four models were established based on clinical characteristics and multiphase computed tomography (CT) images for preoperative identification of ESTM, including a deep learning model, a hand‐crafted radiomic model, a clinical model, and a combined model. C‐index, decision curve, and calibration curve were utilized to assess the model performances. Survival analysis was conducted to explore the ability of stratifying overall survival (OS). Results The combined model showed good discrimination of the ESTM [C‐indices (95% confidence interval, CI): 0.770 (0.729–0.812) and 0.761 (0.718–0.805) in training and test cohorts respectively], which outperformed deep learning model, radiomics model, and clinical model. The stratified analysis showed this model was not affected by patient's tumor size, the presence of lymphovascular invasion, and Lauren classification ( p < 0.05 ). Moreover, the model score showed strong consistency with the OS [C‐indices (95%CI): 0.723 (0.658–0.789, p < 0.0001 ) in the internal survival cohort and 0.715 (0.650–0.779, p < 0.0001 ) in the external survival cohort]. More interestingly, univariate analysis showed the model score was significantly associated with occult distant metastasis ( p < 0.05 ) that was missed by preoperative diagnosis. Conclusions The model combining CT images and clinical characteristics had an impressive predictive ability of both ESTM and prognosis, which has the potential to serve as an effective complement to the preoperative TNM staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
40秒前
昭昭发布了新的文献求助20
58秒前
CipherSage应助蓝色花园采纳,获得10
1分钟前
ring完成签到,获得积分20
1分钟前
乐乐应助Willow采纳,获得10
1分钟前
ring发布了新的文献求助10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
研友_ZG4ml8完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
purple发布了新的文献求助10
2分钟前
Willow发布了新的文献求助10
2分钟前
2分钟前
2分钟前
蓝色花园发布了新的文献求助10
2分钟前
科研通AI6应助purple采纳,获得10
2分钟前
领导范儿应助Willow采纳,获得10
3分钟前
wy.he应助shanshan__采纳,获得60
3分钟前
uikymh完成签到 ,获得积分0
3分钟前
3分钟前
Noob_saibot发布了新的文献求助10
4分钟前
眯眯眼的秋柔完成签到,获得积分20
4分钟前
4分钟前
4分钟前
雪白的威完成签到,获得积分10
4分钟前
酷波er应助科研通管家采纳,获得10
4分钟前
雪白的威发布了新的文献求助10
4分钟前
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
香蕉觅云应助蓝色花园采纳,获得10
5分钟前
Willow发布了新的文献求助10
5分钟前
purple发布了新的文献求助10
5分钟前
bkagyin应助purple采纳,获得30
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
烟花应助科研通管家采纳,获得10
6分钟前
SciGPT应助科研通管家采纳,获得30
6分钟前
八戒想偷懒完成签到,获得积分10
6分钟前
制冷剂完成签到 ,获得积分10
6分钟前
上官若男应助Shenqm采纳,获得10
7分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450047
求助须知:如何正确求助?哪些是违规求助? 4557980
关于积分的说明 14265261
捐赠科研通 4481291
什么是DOI,文献DOI怎么找? 2454754
邀请新用户注册赠送积分活动 1445562
关于科研通互助平台的介绍 1421482