Pattern Recognition and Modelling in Electrocardiogram Signals: Early Detection of Myocardial Ischemia and Infraction

心肌梗塞 人工智能 计算机科学 特征提取 工件(错误) 模式识别(心理学) 心肌缺血 缺血 噪音(视频) 医学 心脏病学 图像(数学)
作者
R. Muthalagu,R. Ramachandran,T. Anuradha,Anupama PH,Jose Anand A
标识
DOI:10.1109/icecaa58104.2023.10212133
摘要

Pattern recognition and modeling in electrocardiogram (ECG) signals play an important role in the early detection of myocardial ischemia and infarction, which are serious cardiovascular diseases that require immediate medical attention. This study provides an overview of techniques used for pattern recognition and modeling in ECG signals to aid in the early detection of myocardial ischemia and infarction. First, the article discusses the importance of ECG signals in the diagnosis and monitoring of heart diseases. It highlights specific ECG changes associated with myocardial ischemia. Understanding these ECG patterns is critical for accurate diagnosis and timely intervention. Next, the study explores various techniques used for pattern recognition and modeling in ECG signals. These techniques include classical signal processing methods, filtering, feature extraction and classification algorithms, and advanced approaches such as machine learning and deep learning. The study discusses the strengths and limitations of each technique and their applications in the diagnosis of myocardial ischemia and myocardial infarction. Also, the study addresses challenges in analyzing ECG signals such as noise, artifact interference, and the need for real-time processing. It also discusses the importance of a comprehensive database of annotated ECG signals for training and testing pattern recognition models. Finally, the potential benefits of early detection of myocardial ischemia and myocardial infarction include improved patient outcomes, reduced morbidity and mortality, and efficient use of healthcare resources. This emphasizes the need for further research and development in pattern recognition and modeling techniques to improve the accuracy and efficiency of early detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼如松发布了新的文献求助10
2秒前
shiyu完成签到,获得积分10
2秒前
5秒前
7秒前
8秒前
9秒前
9秒前
俭朴的跳跳糖完成签到 ,获得积分10
11秒前
高不二发布了新的文献求助10
11秒前
风清扬应助一介书生采纳,获得10
11秒前
11秒前
Wang完成签到,获得积分20
12秒前
十三发布了新的文献求助10
12秒前
holi完成签到 ,获得积分10
12秒前
Belinda完成签到 ,获得积分10
12秒前
shiyu发布了新的文献求助10
14秒前
徐徐诱之发布了新的文献求助30
14秒前
15秒前
15秒前
Wang发布了新的文献求助10
15秒前
16秒前
16秒前
梁某完成签到,获得积分10
17秒前
17秒前
18秒前
今后应助十三采纳,获得10
19秒前
19秒前
领导范儿应助shiyu采纳,获得10
19秒前
19秒前
一介书生完成签到,获得积分10
20秒前
Hello应助小牛马阿欢采纳,获得10
21秒前
万能图书馆应助标致电源采纳,获得10
21秒前
聆(*^_^*)发布了新的文献求助50
21秒前
梦溪发布了新的文献求助10
22秒前
22秒前
23秒前
山海之间完成签到,获得积分10
23秒前
24秒前
25秒前
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993711
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265414
捐赠科研通 3274169
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712