Remaining Useful Life Prediction based on PCA and Similarity Methods

欧几里德距离 相似性(几何) 主成分分析 数据挖掘 计算机科学 索引(排版) 维数之咒 相关系数 人工智能 机器学习 万维网 图像(数学)
作者
Chaoqun Duan,Yilin Shen,Kai Guo,Bo Sheng,wang yuanhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad0685
摘要

Abstract Aircraft engine failures or damages not only incur substantial financial losses but also present risks of injuries or even fatalities. Hence, it is of utmost importance to devise an effective method to predict potential failures in advance, thereby mitigating accidents and minimizing losses. This paper proposes a novel approach that combines principal component analysis (PCA) with similarity methods to establish a degradation trajectory database and predict the remaining useful life (RUL) of new engines by identifying similar trajectories. Firstly, the data dimensionality is reduced using PCA to create a health index. The validity of the reduced data is confirmed by calculating the Spearman correlation coefficient between the index and the RUL. During the similarity comparison process, the Manhattan distance is employed as the calculation method, and parameter optimization is performed on the length of selected time segments and the number of chosen similar trajectories to optimize the similarity RUL prediction model, resulting in the best prediction results among all engine test sets. Notably, this paper introduces the feasibility of employing the Manhattan distance in similarity method prediction, which diverges from the prevalent use of Euclidean distance in the current literature. This finding offers innovative ideas and perspectives for advancing RUL prediction methodologies. By adopting the proposed approach, the occurrence of accidents and losses associated with aircraft engine failures can be substantially reduced, leading to enhanced safety and economic benefits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CooLIT发布了新的文献求助10
刚刚
刘霞完成签到,获得积分10
刚刚
Mr祥完成签到,获得积分10
刚刚
胖虎的老张完成签到,获得积分10
刚刚
米米米完成签到,获得积分10
刚刚
孤独问旋完成签到,获得积分10
1秒前
大个应助豌豆射手采纳,获得10
1秒前
YING完成签到,获得积分10
2秒前
小杭76应助优雅的砖头采纳,获得10
2秒前
机智跳跳糖完成签到,获得积分10
2秒前
充电宝应助果称采纳,获得10
2秒前
眼睛大的可乐完成签到,获得积分10
3秒前
ppppp完成签到,获得积分20
3秒前
3秒前
lalala应助QIQI采纳,获得10
3秒前
清爽猕猴桃完成签到,获得积分20
4秒前
含糊的衬衫完成签到 ,获得积分20
4秒前
爱哭的小女孩完成签到,获得积分10
4秒前
4秒前
梦槐完成签到,获得积分10
5秒前
吕君完成签到,获得积分10
5秒前
anan应助竹林风箫采纳,获得10
6秒前
6秒前
依然小爽完成签到,获得积分10
6秒前
7秒前
Cy完成签到,获得积分10
7秒前
乐观的海发布了新的文献求助10
8秒前
NexusExplorer应助勤劳寒烟采纳,获得10
9秒前
9秒前
YUMMY发布了新的文献求助10
9秒前
10秒前
nancylan应助CooLIT采纳,获得10
10秒前
10秒前
orixero应助糟糕的秋白采纳,获得10
10秒前
GG完成签到,获得积分10
11秒前
11秒前
斯文白梦完成签到,获得积分10
11秒前
yy发布了新的文献求助10
12秒前
清心淡如水完成签到 ,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923