Remaining Useful Life Prediction based on PCA and Similarity Methods

欧几里德距离 相似性(几何) 主成分分析 数据挖掘 计算机科学 索引(排版) 维数之咒 相关系数 人工智能 机器学习 万维网 图像(数学)
作者
Chaoqun Duan,Yilin Shen,Kai Guo,Bo Sheng,wang yuanhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad0685
摘要

Abstract Aircraft engine failures or damages not only incur substantial financial losses but also present risks of injuries or even fatalities. Hence, it is of utmost importance to devise an effective method to predict potential failures in advance, thereby mitigating accidents and minimizing losses. This paper proposes a novel approach that combines principal component analysis (PCA) with similarity methods to establish a degradation trajectory database and predict the remaining useful life (RUL) of new engines by identifying similar trajectories. Firstly, the data dimensionality is reduced using PCA to create a health index. The validity of the reduced data is confirmed by calculating the Spearman correlation coefficient between the index and the RUL. During the similarity comparison process, the Manhattan distance is employed as the calculation method, and parameter optimization is performed on the length of selected time segments and the number of chosen similar trajectories to optimize the similarity RUL prediction model, resulting in the best prediction results among all engine test sets. Notably, this paper introduces the feasibility of employing the Manhattan distance in similarity method prediction, which diverges from the prevalent use of Euclidean distance in the current literature. This finding offers innovative ideas and perspectives for advancing RUL prediction methodologies. By adopting the proposed approach, the occurrence of accidents and losses associated with aircraft engine failures can be substantially reduced, leading to enhanced safety and economic benefits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷语发布了新的文献求助10
1秒前
邓可新发布了新的文献求助10
1秒前
贪玩菲音完成签到,获得积分10
2秒前
2秒前
wxt完成签到 ,获得积分10
2秒前
大个应助LGChemistry采纳,获得10
3秒前
hahahah发布了新的文献求助10
4秒前
WWXWWX发布了新的文献求助10
4秒前
Zn发布了新的文献求助10
4秒前
小满发布了新的文献求助30
5秒前
6秒前
6秒前
无敌阿东完成签到 ,获得积分10
6秒前
gwenjing完成签到,获得积分10
6秒前
刘大宝发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
小学徒完成签到,获得积分10
8秒前
8秒前
dreamon发布了新的文献求助10
9秒前
哈哈哈发布了新的文献求助10
9秒前
9秒前
liuqiaozhutou完成签到,获得积分10
9秒前
香蕉觅云应助petiteblanche采纳,获得10
10秒前
林悦涵完成签到,获得积分10
10秒前
lanlan完成签到,获得积分10
10秒前
10秒前
10秒前
LGChemistry发布了新的文献求助10
11秒前
11秒前
老实人发布了新的文献求助30
11秒前
邓可新完成签到,获得积分10
11秒前
廉不可完成签到,获得积分0
12秒前
an完成签到,获得积分10
12秒前
14秒前
Youtenter发布了新的文献求助20
14秒前
枫叶发布了新的文献求助10
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143506
求助须知:如何正确求助?哪些是违规求助? 2794865
关于积分的说明 7812588
捐赠科研通 2450967
什么是DOI,文献DOI怎么找? 1304178
科研通“疑难数据库(出版商)”最低求助积分说明 627193
版权声明 601386