Remaining Useful Life Prediction based on PCA and Similarity Methods

欧几里德距离 相似性(几何) 主成分分析 数据挖掘 计算机科学 索引(排版) 维数之咒 相关系数 人工智能 机器学习 万维网 图像(数学)
作者
Chaoqun Duan,Yilin Shen,Kai Guo,Bo Sheng,wang yuanhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad0685
摘要

Abstract Aircraft engine failures or damages not only incur substantial financial losses but also present risks of injuries or even fatalities. Hence, it is of utmost importance to devise an effective method to predict potential failures in advance, thereby mitigating accidents and minimizing losses. This paper proposes a novel approach that combines principal component analysis (PCA) with similarity methods to establish a degradation trajectory database and predict the remaining useful life (RUL) of new engines by identifying similar trajectories. Firstly, the data dimensionality is reduced using PCA to create a health index. The validity of the reduced data is confirmed by calculating the Spearman correlation coefficient between the index and the RUL. During the similarity comparison process, the Manhattan distance is employed as the calculation method, and parameter optimization is performed on the length of selected time segments and the number of chosen similar trajectories to optimize the similarity RUL prediction model, resulting in the best prediction results among all engine test sets. Notably, this paper introduces the feasibility of employing the Manhattan distance in similarity method prediction, which diverges from the prevalent use of Euclidean distance in the current literature. This finding offers innovative ideas and perspectives for advancing RUL prediction methodologies. By adopting the proposed approach, the occurrence of accidents and losses associated with aircraft engine failures can be substantially reduced, leading to enhanced safety and economic benefits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
打打应助嘟嘟请让一让采纳,获得10
2秒前
专一完成签到,获得积分10
2秒前
Lucas应助九川采纳,获得10
2秒前
yl关闭了yl文献求助
2秒前
3秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
3秒前
3秒前
丘比特应助卡卡采纳,获得10
4秒前
4秒前
毛毛发布了新的文献求助10
4秒前
ljx完成签到 ,获得积分10
4秒前
活力山蝶应助小白采纳,获得10
7秒前
xg完成签到,获得积分10
7秒前
Zezezee发布了新的文献求助10
7秒前
笑点低可乐完成签到,获得积分10
8秒前
8秒前
坚强的樱发布了新的文献求助10
8秒前
8秒前
求解限发布了新的文献求助160
8秒前
9秒前
白宝宝北北白应助XIN采纳,获得10
9秒前
wenjian发布了新的文献求助10
9秒前
10秒前
华仔应助jy采纳,获得10
10秒前
hoongyan完成签到 ,获得积分10
10秒前
Ava应助aoxiangcaizi12采纳,获得10
12秒前
Amai完成签到,获得积分10
12秒前
13秒前
九川发布了新的文献求助10
14秒前
风的季节发布了新的文献求助10
14秒前
可耐的乐荷完成签到,获得积分10
15秒前
WEILAI完成签到,获得积分10
15秒前
my发布了新的文献求助10
15秒前
wenjian完成签到,获得积分10
16秒前
16秒前
Accept2024完成签到,获得积分10
17秒前
万能图书馆应助笑笑采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794