Remaining Useful Life Prediction based on PCA and Similarity Methods

欧几里德距离 相似性(几何) 主成分分析 数据挖掘 计算机科学 索引(排版) 维数之咒 相关系数 人工智能 机器学习 万维网 图像(数学)
作者
Chaoqun Duan,Yilin Shen,Kai Guo,Bo Sheng,wang yuanhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad0685
摘要

Abstract Aircraft engine failures or damages not only incur substantial financial losses but also present risks of injuries or even fatalities. Hence, it is of utmost importance to devise an effective method to predict potential failures in advance, thereby mitigating accidents and minimizing losses. This paper proposes a novel approach that combines principal component analysis (PCA) with similarity methods to establish a degradation trajectory database and predict the remaining useful life (RUL) of new engines by identifying similar trajectories. Firstly, the data dimensionality is reduced using PCA to create a health index. The validity of the reduced data is confirmed by calculating the Spearman correlation coefficient between the index and the RUL. During the similarity comparison process, the Manhattan distance is employed as the calculation method, and parameter optimization is performed on the length of selected time segments and the number of chosen similar trajectories to optimize the similarity RUL prediction model, resulting in the best prediction results among all engine test sets. Notably, this paper introduces the feasibility of employing the Manhattan distance in similarity method prediction, which diverges from the prevalent use of Euclidean distance in the current literature. This finding offers innovative ideas and perspectives for advancing RUL prediction methodologies. By adopting the proposed approach, the occurrence of accidents and losses associated with aircraft engine failures can be substantially reduced, leading to enhanced safety and economic benefits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
韩麒嘉完成签到 ,获得积分10
1秒前
迷人绮彤发布了新的文献求助10
1秒前
南城忆潇湘完成签到,获得积分10
1秒前
Shmily完成签到,获得积分10
2秒前
shlw完成签到,获得积分10
2秒前
4秒前
4秒前
suyihui应助自由可兰采纳,获得20
5秒前
Mr兔仙森完成签到,获得积分10
5秒前
都能看出你打开完成签到,获得积分10
6秒前
6秒前
7秒前
淡淡的山芙完成签到 ,获得积分10
8秒前
8秒前
hongjing发布了新的文献求助10
9秒前
CipherSage应助沉静的白猫采纳,获得10
10秒前
11秒前
12秒前
12秒前
荣誉完成签到,获得积分10
13秒前
Wittig发布了新的文献求助10
13秒前
花里尘完成签到,获得积分10
13秒前
皮卡丘完成签到 ,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
sheepy发布了新的文献求助10
14秒前
超级驼鹿发布了新的文献求助30
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
17秒前
应万言完成签到,获得积分0
17秒前
玉子发布了新的文献求助10
17秒前
17秒前
17秒前
传奇3应助hongjing采纳,获得10
17秒前
大鱼发布了新的文献求助10
18秒前
成成完成签到,获得积分10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778513
求助须知:如何正确求助?哪些是违规求助? 5641999
关于积分的说明 15449665
捐赠科研通 4910179
什么是DOI,文献DOI怎么找? 2642469
邀请新用户注册赠送积分活动 1590270
关于科研通互助平台的介绍 1544599