Remaining Useful Life Prediction based on PCA and Similarity Methods

欧几里德距离 相似性(几何) 主成分分析 数据挖掘 计算机科学 索引(排版) 维数之咒 相关系数 人工智能 机器学习 万维网 图像(数学)
作者
Chaoqun Duan,Yilin Shen,Kai Guo,Bo Sheng,wang yuanhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad0685
摘要

Abstract Aircraft engine failures or damages not only incur substantial financial losses but also present risks of injuries or even fatalities. Hence, it is of utmost importance to devise an effective method to predict potential failures in advance, thereby mitigating accidents and minimizing losses. This paper proposes a novel approach that combines principal component analysis (PCA) with similarity methods to establish a degradation trajectory database and predict the remaining useful life (RUL) of new engines by identifying similar trajectories. Firstly, the data dimensionality is reduced using PCA to create a health index. The validity of the reduced data is confirmed by calculating the Spearman correlation coefficient between the index and the RUL. During the similarity comparison process, the Manhattan distance is employed as the calculation method, and parameter optimization is performed on the length of selected time segments and the number of chosen similar trajectories to optimize the similarity RUL prediction model, resulting in the best prediction results among all engine test sets. Notably, this paper introduces the feasibility of employing the Manhattan distance in similarity method prediction, which diverges from the prevalent use of Euclidean distance in the current literature. This finding offers innovative ideas and perspectives for advancing RUL prediction methodologies. By adopting the proposed approach, the occurrence of accidents and losses associated with aircraft engine failures can be substantially reduced, leading to enhanced safety and economic benefits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃橘子吗完成签到 ,获得积分10
刚刚
Clara发布了新的文献求助10
1秒前
1秒前
geyuanhong完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助是我呀小夏采纳,获得10
3秒前
4秒前
5秒前
852应助zdd采纳,获得10
5秒前
盛天虹完成签到,获得积分10
6秒前
飞阳发布了新的文献求助10
7秒前
rosenkranz发布了新的文献求助10
8秒前
8秒前
Capital发布了新的文献求助10
8秒前
dmq完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
dut杜发布了新的文献求助10
10秒前
Zhang发布了新的文献求助30
10秒前
YangYifan应助1233采纳,获得20
11秒前
田様应助是我呀小夏采纳,获得10
11秒前
邱寒烟aa完成签到 ,获得积分0
12秒前
Clara完成签到,获得积分10
12秒前
14秒前
浮游应助shaco采纳,获得10
15秒前
深情安青应助简单的帽子采纳,获得10
15秒前
rosenkranz完成签到,获得积分10
16秒前
16秒前
慕青应助高高朋友采纳,获得10
17秒前
冷傲的擎汉完成签到 ,获得积分10
17秒前
飘逸的天菱完成签到,获得积分10
18秒前
guo完成签到 ,获得积分10
18秒前
rebubu应助酥酥采纳,获得10
19秒前
Hello应助ava采纳,获得10
19秒前
兔美酱发布了新的文献求助10
19秒前
李健应助00000采纳,获得30
21秒前
活力的沛菡完成签到,获得积分10
21秒前
晨曦完成签到,获得积分10
21秒前
21秒前
22秒前
guo关注了科研通微信公众号
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694967
求助须知:如何正确求助?哪些是违规求助? 5099560
关于积分的说明 15214900
捐赠科研通 4851435
什么是DOI,文献DOI怎么找? 2602325
邀请新用户注册赠送积分活动 1554189
关于科研通互助平台的介绍 1512137