DeepMA: End-to-End Deep Multiple Access for Wireless Image Transmission in Semantic Communication

计算机科学 端到端原则 编码器 电信线路 无线 多路复用 频道(广播) 计算机工程 计算机网络 电信 操作系统
作者
Wenyu Zhang,Kaiyuan Bai,Sherali Zeadally,Haijun Zhang,Hua Shao,Hui Ma,Victor C. M. Leung
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 387-402 被引量:4
标识
DOI:10.1109/tccn.2023.3326302
摘要

Semantic communication is a new paradigm that exploits deep learning models to enable end-to-end (E2E) communications processes, and recent studies have shown that it can achieve better noise resiliency compared with traditional communication schemes in a low signal-to-noise (SNR) regime. To achieve multiple access in semantic communication, we propose a deep learning-based multiple access (DeepMA) method by training semantic communication models with the abilities of joint source-channel coding (JSCC) and orthogonal signal modulation. DeepMA is achieved by a DeepMA network (DMANet), which is comprised of several independent encoder-decoder pairs (EDPs), and the DeepMA encoders can encode the input data as mutually orthogonal semantic symbol vectors (SSVs) such that the DeepMA decoders can detect and recover their own target data from a received mixed SSV (MSSV) superposed by multiple SSV components transmitted from different encoders. We describe frameworks of DeepMA in wireless device-to-device (D2D), downlink, and uplink channel multiplexing scenarios, along with the training algorithm. We evaluate the performance of the proposed DeepMA in wireless image transmission tasks and compare its performance with the attention module-based deep JSCC (ADJSCC) method and conventional communication schemes using better portable graphics (BPG) and Low-density parity-check code (LDPC). The results obtained show that the proposed DeepMA can achieve effective, flexible, and privacy-preserving channel multiplexing process, and demonstrate that our proposed DeepMA approach can yield comparable bandwidth efficiency compared with conventional multiple access schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyg完成签到,获得积分10
1秒前
nano应助方俊驰采纳,获得10
1秒前
丘比特应助lx采纳,获得10
1秒前
小酒迟疑发布了新的文献求助10
2秒前
偏i意气用事完成签到,获得积分10
2秒前
小二郎应助李李采纳,获得10
3秒前
4秒前
ding应助lucky采纳,获得10
5秒前
鱼鱼鱼完成签到,获得积分10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
煜煜子发布了新的文献求助10
8秒前
顾矜应助燕儿采纳,获得10
9秒前
syderato完成签到,获得积分10
9秒前
9秒前
10秒前
mb发布了新的文献求助10
10秒前
123发布了新的文献求助10
11秒前
11秒前
通通通发布了新的文献求助10
12秒前
充电宝应助晴朗采纳,获得10
12秒前
minya完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
睡不醒啊发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302828
求助须知:如何正确求助?哪些是违规求助? 2937174
关于积分的说明 8480818
捐赠科研通 2611083
什么是DOI,文献DOI怎么找? 1425572
科研通“疑难数据库(出版商)”最低求助积分说明 662379
邀请新用户注册赠送积分活动 646788