A Crystal Plasticity Finite Element—Machine Learning Combined Approach for Phase Transformation Prediction in High Entropy Alloy

材料科学 电子背散射衍射 有限元法 微观结构 晶体孪晶 合金 延展性(地球科学) 转化(遗传学) 相(物质) 高熵合金 晶体塑性 实验数据 机器学习 人工智能 计算机科学 结构工程 复合材料 数学 工程类 生物化学 蠕动 化学 统计 有机化学 基因
作者
Mehrzad Soltani,Sanjida Ferdousi,Ravi Sankar Haridas,Rajiv S. Mishra,Yijie Jiang
出处
期刊:International Journal of Applied Mechanics [World Scientific]
卷期号:16 (02) 被引量:5
标识
DOI:10.1142/s1758825124500248
摘要

The mechanical properties of an alloy depend on its microstructure. The strength-ductility trade-off is a paradigm that existed for a long time. Advanced alloys, such as high entropy alloys (HEAs), utilize a dual-phase strengthening mechanism, which originates from the microstructural phenomena consisting of twinning and phase transformation, to significantly improve their mechanical properties. To understand the impact of phase transformation mechanism on stress–strain response, developments of crystal plasticity finite element models (CPFEM) and machine learning (ML) together with experimental methods have potential to capture the relationships between descriptive features and targeted phenomena. Here, ML models on local crystallography, local stresses, and energy-based driving forces are leveraged for phase transformation prediction in a HEA. The ML model (XGBoost classification model) uses a hybrid training data combining electron backscatter diffraction (EBSD) experimental data and CPFEM simulation results. This approach enhances prediction performance at optimum data sizes. This predictive model is implemented in multiple experimental measurements to validate our models and evaluates importance of different physical quantities on phase transformation phenomenon. The prediction accuracy reached over 95% compared to experimental data. The CPFEM-ML framework used in this study is expected to be applicable to other HEA systems to facilitate the understanding and prediction of the phase transformation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xqc发布了新的文献求助10
1秒前
lemon完成签到,获得积分10
2秒前
2秒前
一一完成签到 ,获得积分10
2秒前
2秒前
yong完成签到,获得积分20
2秒前
4秒前
hzh完成签到 ,获得积分10
5秒前
achen完成签到,获得积分20
5秒前
科研通AI6应助酷炫翠柏采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
Rae发布了新的文献求助10
7秒前
yongtt完成签到,获得积分20
8秒前
我要考上研究生完成签到,获得积分10
9秒前
科研通AI6应助小录采纳,获得50
9秒前
忐忑的新蕾完成签到,获得积分10
10秒前
pluto应助heyinglong采纳,获得10
10秒前
10秒前
xy完成签到,获得积分10
11秒前
ruqinmq发布了新的文献求助10
12秒前
12秒前
12秒前
qiu完成签到,获得积分20
12秒前
科研通AI6应助nenoaowu采纳,获得10
12秒前
小孙爱努力完成签到,获得积分10
13秒前
13秒前
科研通AI6应助DZT采纳,获得10
13秒前
14秒前
14秒前
15秒前
16秒前
田様应助Sunny采纳,获得30
16秒前
辛勤的火完成签到,获得积分20
17秒前
17秒前
李wz发布了新的文献求助10
17秒前
17秒前
阳阳完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581067
求助须知:如何正确求助?哪些是违规求助? 4665670
关于积分的说明 14757575
捐赠科研通 4607418
什么是DOI,文献DOI怎么找? 2528250
邀请新用户注册赠送积分活动 1497567
关于科研通互助平台的介绍 1466460