运动前皮质
动作(物理)
神经科学
等级制度
镜像神经元
计算机科学
心理学
认知心理学
运动皮层
背
生物
物理
解剖
量子力学
刺激
经济
市场经济
作者
Shahar Aberbach-Goodman,Roy Mukamel
标识
DOI:10.1038/s41598-023-46917-z
摘要
During social interactions, we continuously integrate current and previous information over varying timescales to infer other people's action intentions. Motor cognition theories argue for a hierarchical organization of goal-directed actions based on temporal scales. Accordingly, transient motor primitives are represented at lower levels of the hierarchy, a combination of primitives building motor sequences at subordinate levels, and more stable overarching action goals at superordinate levels. A neural topography of hierarchal timescales for information accumulation was previously shown in the visual and auditory domains. However, whether such a temporal hierarchy can also account for observed goal-directed action representations in motor pathways remains to be determined. Thus, the current study examined the neural architecture underlying the processing of observed goal-directed actions using inter-subject correlation (ISC) of fMRI activity. Observers (n = 24) viewed sequential hand movements presented in their intact order or piecewise scrambled at three timescales pertaining to goal-directed action evolution (Primitives: ± 1.5 s, Sub-Goals: ± 4 s, and High-Goals: ± 10 s). The results revealed differential intrinsic temporal capacities for integrating goal-directed action information across brain areas engaged in action observation. Longer timescales (> ± 10 s) were found in the posterior parietal and dorsal premotor compared to the ventral premotor (± 4 s) and anterior parietal (± 1.5 s) cortex. Moreover, our results revealed a hemispheric bias with more extended timescales in the right MT+, primary somatosensory, and early visual cortices compared to their homotopic regions in the left hemisphere. Our findings corroborate a hierarchical neural mapping of observed actions based on temporal scales of goals and provide further support for a ubiquitous time-dependent neural organization of information processing across multiple modalities.
科研通智能强力驱动
Strongly Powered by AbleSci AI