亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Influence Nodes Identifying Method via Community-Based Backward Generating Network Framework

树遍历 次模集函数 计算机科学 节点(物理) 水准点(测量) 鉴定(生物学) 集合(抽象数据类型) 数据挖掘 最大化 图形 算法 理论计算机科学 数学优化 数学 工程类 植物 结构工程 大地测量学 生物 程序设计语言 地理
作者
Xiaoyang Liu,Shu Ye,Giacomo Fiumara,Pasquale De Meo
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 236-253 被引量:20
标识
DOI:10.1109/tnse.2023.3295911
摘要

Traditional methods for influential node identification usually require time consuming network traversal to select the candidate node set. In this article we propose a new influence nodes identification method, called Community-based Backward Generating Network (CBGN). First, the influence maximization framework is built by integrating community detection and Backward Generation Network (BGN); then, nodes in each community are selected using a new method, called imp_BGN, that uses graph traversal to assist the construction of BGN. The ultimate goal of the network generation method is to find a sequence of nodes that can minimize the cost function, and to select high influential nodes without restoring the original network during network construction. finally, an improved submodular CELF (Cost Effective Lazy Forward) algorithm is proposed to hunt for the final seed node from the candidate node pool considering the location relation and structural similarity among nodes. Experimental results show that: in the SIR (susceptible-infected-recovered) model experiment, compared with the benchmark methods, the infection scale of the proposed CBGN method in 6 real networks is improved by 0.45%, 0.59%, 0.84%, 1.05%, 0.71% and 0.14%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJBOND完成签到,获得积分10
2秒前
2秒前
Shiku完成签到,获得积分10
6秒前
7秒前
8秒前
ccm应助片片有乐事采纳,获得10
9秒前
FashionBoy应助Sarina采纳,获得10
12秒前
独特的鹅发布了新的文献求助10
13秒前
onestep完成签到,获得积分10
13秒前
雷锋发布了新的文献求助10
15秒前
17秒前
Rourou完成签到,获得积分10
19秒前
菜菜蔡儿发布了新的文献求助10
23秒前
Criminology34应助ACE采纳,获得10
25秒前
独特的鹅完成签到,获得积分10
25秒前
morena发布了新的文献求助30
26秒前
28秒前
Yuan完成签到 ,获得积分10
30秒前
32秒前
大个应助LALA采纳,获得10
33秒前
香蕉觅云应助七宝大当家采纳,获得10
39秒前
Akim应助撕佳采纳,获得10
42秒前
残酷无情猫猫头完成签到,获得积分10
44秒前
肥鲸鱼完成签到,获得积分10
44秒前
45秒前
无尘完成签到 ,获得积分10
47秒前
51秒前
海鸥别叫了完成签到 ,获得积分10
53秒前
菜菜蔡儿完成签到 ,获得积分10
55秒前
撕佳发布了新的文献求助10
55秒前
56秒前
LALA发布了新的文献求助10
1分钟前
1分钟前
小y要读书完成签到,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
Tanya47应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
长情谷南发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664012
求助须知:如何正确求助?哪些是违规求助? 4856247
关于积分的说明 15106917
捐赠科研通 4822415
什么是DOI,文献DOI怎么找? 2581446
邀请新用户注册赠送积分活动 1535597
关于科研通互助平台的介绍 1493881