线性分式变换
稳健性(进化)
模型预测控制
控制理论(社会学)
数学优化
不可用
卡鲁什-库恩-塔克条件
有界函数
调度(生产过程)
二次方程
计算机科学
线性系统
增益调度
数学
鲁棒控制
控制系统
工程类
控制(管理)
数学分析
生物化学
化学
人工智能
电气工程
基因
几何学
统计
作者
Marcelo Menezes Morato,Julio E. Normey‐Rico,Olivier Sename
摘要
Abstract In this paper, we evaluate the robustness qualities of Model Predictive Control (MPC) algorithms applied for Linear Parameter Varying (LPV) systems. Specifically, we analyze gain‐scheduled LPV MPC schemes, that is, those that use model predictions based on the LPV scheduling variables available at each sampling instant. Accordingly, we extend previous results on finite‐horizon robustness analysis of linear time‐variant (LTV) systems, employing Integral Quadratic Constraints (IQCs) to describe the input‐output behavior of prediction uncertainties. We provide two main novelties in our formulation: (i) we propose a parameter‐dependent Karush–Kuhn–Tucker (KKT) inequality to describe the existence and feasibility of the LPV MPC control inputs; and (ii) we model the uncertainties that arise due to the unavailability of the scheduling trajectory along the prediction horizon as a bounded interconnection in the form of a Linear Fractional Transformation (LFT). Accordingly, we use dissipativity arguments (‐hard IQCs) in order to compute robust induced gains of the closed‐loop system (specifically, the and ‐to‐Euclidean metrics), taking into account the MPC prediction uncertainties. We also generate the set of reachable states from a given initial condition. A benchmark example is used to illustrate the proposed analysis procedure.
科研通智能强力驱动
Strongly Powered by AbleSci AI