亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

COVID-19 diagnosis with Deep Learning: Adjacent-pooling CTScan-COVID-19 Classifier Based on ResNet and CBAM

2019年冠状病毒病(COVID-19) 卷积神经网络 人工智能 计算机科学 联营 模式识别(心理学) 深度学习 分类器(UML) 灰度 图像(数学) 医学 病理 疾病 传染病(医学专业)
作者
Ali Deeb,Ahmad Debow,Saleem Mansour,Viacheslav Shkodyrev
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105285-105285 被引量:7
标识
DOI:10.1016/j.bspc.2023.105285
摘要

The accurate and rapid diagnosis of COVID-19 has been a critical challenge worldwide. Several approaches have been proposed to address this issue, including clinical tests, imaging techniques like chest X-rays and CT scans, and the widely used RT-PCR test. Recently, deep convolutional neural networks (CNNs) have been shown to be effective in detecting COVID-19 in CT scan images. In this study, we investigated the efficacy of ResNet, a state-of-the-art deep CNN, along with attention mechanisms to detect COVID-19 in CT scan images. Furthermore, we introduced a novel CNN, named AdjCNet, which focuses on the grayscale variations among adjacent areas within the image. Our combination of ResNet, Convolutional Block Attention Module (CBAM), and AdjCNet achieved an outstanding classification accuracy of 99.23% for CT images in identifying COVID-19, Normal, or Community Acquired Pneumonia (CAP). Specifically, our proposed method achieved a precision of 100% for identifying CAP images and a precision exceeding 99% for the other two classes. In addition, we performed a four-folds cross-validation to evaluate the performance of our proposed model for COVID-19 detection using CT-scan images. The results of the four-folds cross-validation demonstrated that our proposed model achieved a mean accuracy and precision of 98.98% and 99.01%, respectively, over the four folds. The final results clearly demonstrate the superiority of our proposed method over the state-of-the-art methods on this dataset. Our findings suggest that our proposed method could serve as an effective and efficient tool for COVID-19 diagnosis, and further studies can explore its application in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xuancheng_SINH完成签到,获得积分10
2秒前
Pattis发布了新的文献求助10
2秒前
Perion完成签到 ,获得积分10
13秒前
大模型应助科研通管家采纳,获得10
18秒前
18秒前
29秒前
ZIS完成签到,获得积分10
32秒前
ZIS发布了新的文献求助10
37秒前
Pattis完成签到 ,获得积分10
50秒前
ZR完成签到,获得积分10
1分钟前
迷人的天抒应助MIMI采纳,获得10
1分钟前
田様应助scl采纳,获得10
1分钟前
英姑应助ZR采纳,获得10
1分钟前
1分钟前
杨无敌完成签到 ,获得积分10
2分钟前
2分钟前
Shan发布了新的文献求助10
2分钟前
Oven完成签到,获得积分10
2分钟前
2分钟前
2分钟前
6666完成签到,获得积分10
2分钟前
2分钟前
2分钟前
wao完成签到 ,获得积分10
2分钟前
2分钟前
scl发布了新的文献求助10
2分钟前
TIGun完成签到,获得积分10
2分钟前
ZR发布了新的文献求助10
2分钟前
TongKY完成签到 ,获得积分10
2分钟前
scl完成签到,获得积分10
2分钟前
Lin发布了新的文献求助10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Akim应助科研通管家采纳,获得20
4分钟前
传奇完成签到 ,获得积分10
4分钟前
所所应助Lin采纳,获得10
4分钟前
Orange应助与枫采纳,获得10
4分钟前
4分钟前
与枫发布了新的文献求助10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968433
求助须知:如何正确求助?哪些是违规求助? 3513255
关于积分的说明 11167068
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794280
邀请新用户注册赠送积分活动 874990
科研通“疑难数据库(出版商)”最低求助积分说明 804629