亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

COVID-19 diagnosis with Deep Learning: Adjacent-pooling CTScan-COVID-19 Classifier Based on ResNet and CBAM

2019年冠状病毒病(COVID-19) 卷积神经网络 人工智能 计算机科学 联营 模式识别(心理学) 深度学习 分类器(UML) 灰度 图像(数学) 医学 病理 传染病(医学专业) 疾病
作者
Ali Deeb,Ahmad Debow,Saleem Mansour,Viacheslav Shkodyrev
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105285-105285 被引量:7
标识
DOI:10.1016/j.bspc.2023.105285
摘要

The accurate and rapid diagnosis of COVID-19 has been a critical challenge worldwide. Several approaches have been proposed to address this issue, including clinical tests, imaging techniques like chest X-rays and CT scans, and the widely used RT-PCR test. Recently, deep convolutional neural networks (CNNs) have been shown to be effective in detecting COVID-19 in CT scan images. In this study, we investigated the efficacy of ResNet, a state-of-the-art deep CNN, along with attention mechanisms to detect COVID-19 in CT scan images. Furthermore, we introduced a novel CNN, named AdjCNet, which focuses on the grayscale variations among adjacent areas within the image. Our combination of ResNet, Convolutional Block Attention Module (CBAM), and AdjCNet achieved an outstanding classification accuracy of 99.23% for CT images in identifying COVID-19, Normal, or Community Acquired Pneumonia (CAP). Specifically, our proposed method achieved a precision of 100% for identifying CAP images and a precision exceeding 99% for the other two classes. In addition, we performed a four-folds cross-validation to evaluate the performance of our proposed model for COVID-19 detection using CT-scan images. The results of the four-folds cross-validation demonstrated that our proposed model achieved a mean accuracy and precision of 98.98% and 99.01%, respectively, over the four folds. The final results clearly demonstrate the superiority of our proposed method over the state-of-the-art methods on this dataset. Our findings suggest that our proposed method could serve as an effective and efficient tool for COVID-19 diagnosis, and further studies can explore its application in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
1分钟前
1分钟前
清风发布了新的文献求助10
1分钟前
yema完成签到 ,获得积分10
1分钟前
清风完成签到,获得积分10
1分钟前
DoubleW完成签到 ,获得积分10
2分钟前
方方别方应助科研通管家采纳,获得10
2分钟前
科目三应助长安采纳,获得10
2分钟前
lzy完成签到,获得积分10
3分钟前
共享精神应助30采纳,获得10
3分钟前
忧虑的翠桃完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
长安发布了新的文献求助10
4分钟前
5分钟前
吴WU发布了新的文献求助10
5分钟前
5分钟前
tangyuan发布了新的文献求助10
5分钟前
StayGolDay完成签到,获得积分10
5分钟前
5分钟前
6分钟前
tangyuan完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
李健的小迷弟应助lve采纳,获得10
6分钟前
6分钟前
蛋蛋发布了新的文献求助10
7分钟前
7分钟前
活力青筠完成签到,获得积分10
7分钟前
lve发布了新的文献求助10
7分钟前
菲菲完成签到,获得积分10
7分钟前
菲菲发布了新的文献求助10
7分钟前
7分钟前
zcn123发布了新的文献求助10
7分钟前
orixero应助蛋蛋采纳,获得10
7分钟前
lve完成签到,获得积分10
7分钟前
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045935
关于积分的说明 9003716
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691462