COVID-19 diagnosis with Deep Learning: Adjacent-pooling CTScan-COVID-19 Classifier Based on ResNet and CBAM

2019年冠状病毒病(COVID-19) 卷积神经网络 人工智能 计算机科学 联营 模式识别(心理学) 深度学习 分类器(UML) 灰度 图像(数学) 医学 病理 疾病 传染病(医学专业)
作者
Ali Deeb,Ahmad Debow,Saleem Mansour,Viacheslav Shkodyrev
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105285-105285 被引量:7
标识
DOI:10.1016/j.bspc.2023.105285
摘要

The accurate and rapid diagnosis of COVID-19 has been a critical challenge worldwide. Several approaches have been proposed to address this issue, including clinical tests, imaging techniques like chest X-rays and CT scans, and the widely used RT-PCR test. Recently, deep convolutional neural networks (CNNs) have been shown to be effective in detecting COVID-19 in CT scan images. In this study, we investigated the efficacy of ResNet, a state-of-the-art deep CNN, along with attention mechanisms to detect COVID-19 in CT scan images. Furthermore, we introduced a novel CNN, named AdjCNet, which focuses on the grayscale variations among adjacent areas within the image. Our combination of ResNet, Convolutional Block Attention Module (CBAM), and AdjCNet achieved an outstanding classification accuracy of 99.23% for CT images in identifying COVID-19, Normal, or Community Acquired Pneumonia (CAP). Specifically, our proposed method achieved a precision of 100% for identifying CAP images and a precision exceeding 99% for the other two classes. In addition, we performed a four-folds cross-validation to evaluate the performance of our proposed model for COVID-19 detection using CT-scan images. The results of the four-folds cross-validation demonstrated that our proposed model achieved a mean accuracy and precision of 98.98% and 99.01%, respectively, over the four folds. The final results clearly demonstrate the superiority of our proposed method over the state-of-the-art methods on this dataset. Our findings suggest that our proposed method could serve as an effective and efficient tool for COVID-19 diagnosis, and further studies can explore its application in clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶椰发布了新的文献求助10
刚刚
paulmichael发布了新的文献求助10
1秒前
煜琪完成签到 ,获得积分10
1秒前
科研小白完成签到 ,获得积分10
3秒前
暗月青影完成签到,获得积分10
9秒前
imagine完成签到,获得积分10
11秒前
13秒前
任性的向薇完成签到,获得积分10
15秒前
我是老大应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
NICAI应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
Ava应助科研通管家采纳,获得20
16秒前
ding应助科研通管家采纳,获得10
16秒前
小葵花完成签到 ,获得积分10
16秒前
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
16秒前
拼搏应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
小新应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
Verity应助科研通管家采纳,获得10
17秒前
小新应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
19秒前
韩涵完成签到 ,获得积分10
21秒前
22秒前
adoudoo完成签到 ,获得积分10
23秒前
Jodie发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555