阳极
重量分析
材料科学
电极
硅
复合数
电导率
锂(药物)
储能
电池(电)
化学工程
锂离子电池
纳米技术
复合材料
光电子学
化学
内分泌学
物理化学
功率(物理)
有机化学
工程类
物理
医学
量子力学
作者
Wen Zhang,Siwei Gui,Zihan Zhang,Wanming Li,Wei Wang,Junhong Wei,Shuibin Tu,Linxin Zhong,Yang Wu,Hongjun Ye,Yongming Sun,Xinwen Peng,Jianyu Huang,Hui Yang
出处
期刊:Small
[Wiley]
日期:2023-07-31
卷期号:19 (48)
被引量:22
标识
DOI:10.1002/smll.202303864
摘要
Silicon (Si) is regarded as one of the most promising anode materials for high-performance lithium-ion batteries (LIBs). However, how to mitigate its poor intrinsic conductivity and the lithiation/delithiation-induced large volume change and thus structural degradation of Si electrodes without compromising their energy density is critical for the practical application of Si in LIBs. Herein, an integration strategy is proposed for preparing a compact micron-sized Si@G/CNF@NC composite with a tight binding and dual-encapsulated architecture that can endow it with superior electrical conductivity and deformation resistance, contributing to excellent cycling stability and good rate performance in thick electrode. At an ultrahigh mass loading of 10.8 mg cm-2 , the Si@G/CNF@NC electrode also presents a large initial areal capacity of 16.7 mA h cm-2 (volumetric capacity of 2197.7 mA h cm-3 ). When paired with LiNi0.95 Co0.02 Mn0.03 O2 , the pouch-type full battery displays a highly competitive gravimetric (volumetric) energy density of ≈459.1 Wh kg-1 (≈1235.4 Wh L-1 ).
科研通智能强力驱动
Strongly Powered by AbleSci AI