Hydrogen leakage location prediction at hydrogen refueling stations based on deep learning

卷积神经网络 计算机科学 泄漏(经济) 深度学习 人工智能 噪音(视频) 超参数 希尔伯特-黄变换 降噪 人工神经网络 模式识别(心理学) 化学 白噪声 电信 图像(数学) 宏观经济学 经济 有机化学
作者
Yubo Bi,Qiulan Wu,Shilu Wang,Jihao Shi,Haiyong Cong,Lili Ye,Wei Gao,Mingshu Bi
出处
期刊:Energy [Elsevier]
卷期号:284: 129361-129361 被引量:52
标识
DOI:10.1016/j.energy.2023.129361
摘要

Accurate and efficient localization of hydrogen leakage is crucial for ensuring the safe and stable operation of hydrogen refueling stations. In this paper, a hybrid model (CEEMDAN–CNN–LSTM) based on data noise reduction and deep learning is proposed to predict the location of hydrogen leakage in hydrogen refueling stations. The model employs the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm to effectively reduce noise and process 720 hydrogen leakage condition datasets. The CNN-LSTM model is constructed by synergistically combining the spatiotemporal feature extraction capabilities of the convolutional neural network (CNN) with the temporal processing capabilities of the long-short-term memory neural network (LSTM) while optimizing hyperparameter combinations through GridSearch. Compared with other models, the proposed CEEMDAN–CNN–LSTM model demonstrates superior prediction performance, achieving an accuracy of 99.54 %, precision of 99.42 %, recall of 99.54 %, and F1-score of 99.46 %. Moreover, when utilizing a 5-s duration of leakage data as input, the model attains an impressive accuracy of 97.64 %. These results underscore the favorable application prospects of the CEEMDAN–CNN–LSTM model in the field of gas leak localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳光不二完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
guo发布了新的文献求助10
4秒前
爱科研168完成签到,获得积分10
4秒前
现代尔芙完成签到 ,获得积分10
4秒前
沐雪完成签到,获得积分10
4秒前
4秒前
考博圣体发布了新的文献求助10
4秒前
李健的粉丝团团长应助tgg采纳,获得10
5秒前
5秒前
搜集达人应助人机采纳,获得10
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
sss发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
lzz完成签到,获得积分10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
Return应助科研通管家采纳,获得10
7秒前
求助人员应助南风采纳,获得30
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
寻道图强应助科研通管家采纳,获得50
7秒前
852应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得30
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360