Effect of vacancy defects of graphene on the interfacial bonding and strengthening mechanism of graphene/Al composite

石墨烯 材料科学 空位缺陷 拉曼光谱 复合材料 复合数 氧化石墨烯纸 化学物理 纳米技术 凝聚态物理 物理 光学
作者
Boyu Ju,Wenshu Yang,Jinpeng Sun,Zhichao Han,Qiang Zhang,Ziyang Xiu,Gaohui Wu
出处
期刊:Surfaces and Interfaces [Elsevier]
卷期号:41: 103272-103272 被引量:4
标识
DOI:10.1016/j.surfin.2023.103272
摘要

The structure and properties of the graphene-Al interface change significantly when defects are present in graphene. However, the effect of defects on interfacial bonding lacks quantitative assessment, and the results of theoretical studies are also difficult to guide the design of interface structures. In this paper, the interfacial structure of graphene-Al with different vacancy defect types has been investigated by first-principle calculations, and the interfacial bonding was calculated by quantifying the interfacial shear strength. The interfacial shear strengths of defect-free, single-vacancy, and double-vacancy were 0.02 GPa, 6.8 GPa, and 8.5 GPa, respectively. Based on the first-principles data and the differential idea, the calculation model of shear strength of graphene-Al interface with different defect contents was established. The role of vacancy defects on the enhancement of graphene-Al interfacial bonding was elucidated. A method to estimate the shear strength of graphene-Al direct bonding interface based on Raman characterization of graphene defects was proposed. The influence of graphene defects on graphene strengthening efficiency was clarified, and an apparent strengthening model applicable to directly bonded interfacial graphene/aluminum composites was established. The model was validated by graphene/Al composites with directly bonding interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助czq采纳,获得30
刚刚
1秒前
1秒前
1秒前
坦率的松完成签到,获得积分10
1秒前
传奇3应助贤惠的正豪采纳,获得10
2秒前
111发布了新的文献求助10
2秒前
三寒鸦完成签到,获得积分10
2秒前
小木棉发布了新的文献求助10
2秒前
2秒前
少年郎完成签到,获得积分20
3秒前
CipherSage应助123lura采纳,获得10
3秒前
七七完成签到,获得积分10
3秒前
科研通AI2S应助小余采纳,获得10
3秒前
苹果骑士完成签到,获得积分10
3秒前
3秒前
shi hui应助jbhb采纳,获得10
4秒前
4秒前
4秒前
JUSTs0so发布了新的文献求助10
4秒前
长夜变清早完成签到,获得积分10
5秒前
6秒前
6秒前
otaro发布了新的文献求助10
7秒前
yinbin完成签到,获得积分10
7秒前
7秒前
独木舟发布了新的文献求助10
7秒前
白衣未央发布了新的文献求助10
7秒前
脑洞疼应助现实的曼荷采纳,获得10
9秒前
9秒前
轩辕德地发布了新的文献求助10
9秒前
三九完成签到,获得积分10
10秒前
orixero应助少年郎采纳,获得10
10秒前
三金发布了新的文献求助10
10秒前
kuku发布了新的文献求助10
10秒前
土豆你个西红柿完成签到 ,获得积分10
11秒前
小余完成签到,获得积分10
11秒前
12秒前
sherry完成签到 ,获得积分10
12秒前
搜集达人应助陈佳琪采纳,获得30
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762