Fabrication of highly flexible luminescent films, hydro gels and anti-counterfeiting applications of La2MoO6:Sm3+ phosphors

荧光粉 材料科学 发光 制作 量子产额 兴奋剂 纳米技术 光电子学 荧光 光学 医学 物理 病理 替代医学
作者
B.R. Radha Krushna,S.C. Sharma,B. Daruka Prasad,Dileep Francis,C. Sridhar,Debasish Misra,Manika Bose,H. Bharath kumar,Aparna Shetty,H. Nagabhushana
出处
期刊:Journal of Science: Advanced Materials and Devices [Elsevier]
卷期号:9 (1): 100641-100641 被引量:23
标识
DOI:10.1016/j.jsamd.2023.100641
摘要

Fabrication of versatile luminescent materials with remarkable quantum yield holds significant importance across various applications. In this context, a series of (1-11 mol %) Sm3+ activated La2MoO6 nanophosphors (LMO:Sm3+ NPs) has been developed. These nanophosphors, denoted as LMO:Sm3+ NPs, serve as a multifunctional platform with applications spanning white LED technology, flexible displays, hydro-gels, and anti-counterfeiting (AC) measures. These phosphors emit a vibrant orange-red light at 601 nm when excited at 402 nm owing to the Sm3+ ions 4G5/2→6H7/2 transition, achieving an high quantum yield of 66.2 %. The optimal doping concentration of Sm3+ ions in the LMO host material is identified as 5 mol %, with concentration quenching primarily attributed to electric multi-polar interaction. Remarkably, the newly fabricated LMO:Sm3+ phosphors exhibit a correlated color temperature (CCT) of 2064 K and maintain excellent color stability. Moreover, a transparent AC film is created using the optimized phosphor and Polydimethylsiloxane (PDMS), offering effective AC capabilities through their orange-red emission when exposed to 365 nm UV light. Notably, these phosphors exhibit sustainability, exceptional flexibility, and foldability, expanding their potential applications in the field of AC. These results underscore the potential of LMO:Sm3+ NPs as highly efficient luminescent platforms, catering to a wide range of applications including white LED's, flexible display devices, hydro-gels, and AC solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZXJ完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
Young完成签到,获得积分10
1秒前
1秒前
赘婿应助甜菜采纳,获得10
1秒前
2秒前
大模型应助宇文数学采纳,获得10
2秒前
2秒前
Criminology34应助糟糕的师采纳,获得10
2秒前
mrli发布了新的文献求助10
3秒前
栗2发布了新的文献求助10
3秒前
3秒前
叶远望发布了新的文献求助10
4秒前
4秒前
嘴嘴完成签到,获得积分10
6秒前
科研通AI6应助甜蜜妙竹采纳,获得10
6秒前
踏实含之完成签到,获得积分20
7秒前
xkkoala完成签到 ,获得积分10
7秒前
liuzhanyu发布了新的文献求助10
7秒前
7秒前
小二郎应助叶子采纳,获得10
8秒前
汉堡国王完成签到,获得积分10
8秒前
manjusaka发布了新的文献求助10
8秒前
Hina完成签到,获得积分10
8秒前
phobeeee完成签到 ,获得积分10
8秒前
梦XING发布了新的文献求助10
8秒前
8秒前
pxhert发布了新的文献求助30
9秒前
bkagyin应助李xxxx采纳,获得10
9秒前
风中雨筠发布了新的文献求助30
10秒前
Ainsley发布了新的文献求助10
10秒前
10秒前
JC325T发布了新的文献求助10
10秒前
Ripples完成签到 ,获得积分10
11秒前
Stone发布了新的文献求助10
13秒前
13秒前
下次一定完成签到,获得积分10
13秒前
Ava应助英俊安莲采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652435
求助须知:如何正确求助?哪些是违规求助? 4787491
关于积分的说明 15060101
捐赠科研通 4811034
什么是DOI,文献DOI怎么找? 2573593
邀请新用户注册赠送积分活动 1529388
关于科研通互助平台的介绍 1488259