How to promote the participation of enterprises using open government data? Evolutionary game analysis by applying dynamic measures

补贴 激励 晋升(国际象棋) 业务 政府(语言学) 背景(考古学) 利益相关者 持续性 产业组织 地方政府 大数据 知识管理 公共经济学 经济 公共关系 计算机科学 微观经济学 政治学 公共行政 政治 哲学 古生物学 操作系统 法学 生物 语言学 市场经济 生态学
作者
Lijie Feng,Lehu Zhang,Jinfeng Wang,Feng Jian
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122348-122348 被引量:12
标识
DOI:10.1016/j.eswa.2023.122348
摘要

As the development of smart cities, driven by emerging technologies, enters a new phase, the focus shifts towards sustaining operations rather than building new infrastructures. In the era of big data, one crucial factor for the sustainability of smart cities is the innovation and economic value generated through open government data (OGD). Local governments often adopt incentive policies to encourage participation, recognizing that most emerging technologies are driven by innovation and promotion from enterprises. This raises a fundamental question: how do the strategies of local governments and enterprises interact in the context of open government data development? In this study, we have developed an approach based on evolutionary game theory to examine the interactions of OGD participants, such as local governments and enterprises, in shaping their long-term decisions. Specifically, we have explored the effectiveness and efficiency of combinations involving hybrid subsidies and data access fees by simulating Evolutionarily Stable Strategies (ESS) based on empirical cases from enterprises. Our findings indicate that dual dynamic measures are more effective and efficient in encouraging stakeholder participation in open government data initiatives over the long term. The results underscore the preference for flexible policies over rigid ones and highlight the critical role of positive interactions between enterprises and local governments in fostering the sustainable operation of OGD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
jrzsy发布了新的文献求助200
2秒前
jingyi发布了新的文献求助10
2秒前
wenbin发布了新的文献求助10
3秒前
3秒前
pakkkho完成签到 ,获得积分10
3秒前
SilentStorm完成签到,获得积分10
4秒前
aaaaaaaa完成签到,获得积分20
4秒前
结实灵完成签到,获得积分10
4秒前
俊逸千山发布了新的文献求助10
4秒前
5秒前
Lazarus完成签到,获得积分10
5秒前
干净映天发布了新的文献求助10
5秒前
咕咚发布了新的文献求助20
6秒前
6秒前
十三发布了新的文献求助10
6秒前
7秒前
Hello应助crave采纳,获得10
7秒前
wenbin完成签到,获得积分10
8秒前
子车雁开发布了新的文献求助30
8秒前
1213发布了新的文献求助10
8秒前
9秒前
所所应助乐乐乐采纳,获得10
9秒前
9秒前
何垠禹发布了新的文献求助10
9秒前
Ling发布了新的文献求助10
10秒前
11秒前
11秒前
weiwei完成签到 ,获得积分10
12秒前
12秒前
星空完成签到,获得积分10
12秒前
眼睛大的笑阳完成签到,获得积分20
12秒前
害羞书易发布了新的文献求助10
12秒前
you发布了新的文献求助10
12秒前
12秒前
13秒前
万能图书馆应助机智紫寒采纳,获得10
13秒前
ZZzz完成签到,获得积分10
14秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271