Collaborative Prediction in Anti-Fraud System Over Multiple Credit Loan Platforms

计算机科学 贷款 加密 特征工程 数据共享 可靠性 机器学习 数据挖掘 人工智能 计算机安全 深度学习 财务 病理 经济 法学 替代医学 医学 政治学
作者
Cheng Wang,Hao Tang,Hangyu Zhu,Changjun Jiang
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 3580-3596
标识
DOI:10.1109/tdsc.2023.3334281
摘要

Anti-fraud engineering for online credit loan (OCL) platforms is getting more challenging due to the developing specialization of gang fraud. Associations are critical features referring to assessing the credibility of loan applications for OCL fraud prediction. State-of-the-art solutions employ graph-based methods to mine hidden associations among loan applications effectively. They perform well based on the information asymmetry which is guaranteed by the huge advantage of platforms over fraudsters in terms of data quantity and quality at their disposal. The inherent difficulty that can be foreseen is the data isolation caused by mistrust between multiple platforms and data control legislations for privacy preservation. To maintain the advantage owned by the platforms, we design a privacy-preserving distributed graph learning framework that ensures critical association repairs by merging parameter sharing and data sharing. Specially, we propose the association reconstruction mechanism (ARM) that consists of the devised exploration, processing, transmission and utilization schemes to realize data sharing. For parameter sharing, we design a hybrid encryption technique to protect privacy during collaboratively learning graph neural network (GNN) models among different financial client platforms. We conduct the experiments over real-life data from large financial platforms. The results demonstrate the effectiveness and efficiency of our proposed methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
lovehuahua发布了新的文献求助10
7秒前
we发布了新的文献求助10
8秒前
啦啦啦完成签到,获得积分10
8秒前
小星发布了新的文献求助30
8秒前
lucas发布了新的文献求助10
9秒前
科研通AI6应助菩提石头采纳,获得10
9秒前
zky完成签到,获得积分20
10秒前
奇趣糖发布了新的文献求助20
11秒前
陈哇塞完成签到,获得积分20
11秒前
彭茜关注了科研通微信公众号
12秒前
烟花应助we采纳,获得10
15秒前
整齐便当发布了新的文献求助10
16秒前
yyzhou应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得200
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
雨姐科研应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得30
20秒前
宅多点应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
yyzhou应助科研通管家采纳,获得10
20秒前
雨姐科研应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
boltos应助chenzhi采纳,获得10
20秒前
yyzhou应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助陈哇塞采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
ilihe应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
Xulyun完成签到 ,获得积分10
23秒前
26秒前
Chiuchiu完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915