Collaborative Prediction in Anti-Fraud System Over Multiple Credit Loan Platforms

计算机科学 贷款 加密 特征工程 数据共享 可靠性 机器学习 数据挖掘 人工智能 计算机安全 深度学习 财务 病理 经济 法学 替代医学 医学 政治学
作者
Cheng Wang,Hao Tang,Hangyu Zhu,Changjun Jiang
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:21 (4): 3580-3596
标识
DOI:10.1109/tdsc.2023.3334281
摘要

Anti-fraud engineering for online credit loan (OCL) platforms is getting more challenging due to the developing specialization of gang fraud. Associations are critical features referring to assessing the credibility of loan applications for OCL fraud prediction. State-of-the-art solutions employ graph-based methods to mine hidden associations among loan applications effectively. They perform well based on the information asymmetry which is guaranteed by the huge advantage of platforms over fraudsters in terms of data quantity and quality at their disposal. The inherent difficulty that can be foreseen is the data isolation caused by mistrust between multiple platforms and data control legislations for privacy preservation. To maintain the advantage owned by the platforms, we design a privacy-preserving distributed graph learning framework that ensures critical association repairs by merging parameter sharing and data sharing. Specially, we propose the association reconstruction mechanism (ARM) that consists of the devised exploration, processing, transmission and utilization schemes to realize data sharing. For parameter sharing, we design a hybrid encryption technique to protect privacy during collaboratively learning graph neural network (GNN) models among different financial client platforms. We conduct the experiments over real-life data from large financial platforms. The results demonstrate the effectiveness and efficiency of our proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助贪玩嘉懿采纳,获得10
刚刚
迷走姑娘完成签到,获得积分10
刚刚
科研通AI6应助朱志伟采纳,获得10
刚刚
无辜凡完成签到,获得积分20
刚刚
路过蜻蜓发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
luhui发布了新的文献求助10
2秒前
2秒前
2秒前
852应助xh采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
Alex完成签到,获得积分10
4秒前
4秒前
无花果应助yyydd采纳,获得10
4秒前
慕青应助Riggle G采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
黄菲菲发布了新的文献求助10
5秒前
vitaminbbc发布了新的文献求助30
5秒前
木木发布了新的文献求助10
5秒前
6秒前
my发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
小橘子2022发布了新的文献求助10
6秒前
CJY发布了新的文献求助10
6秒前
牛马日常完成签到,获得积分10
6秒前
在水一方应助佳洛父亲采纳,获得10
6秒前
搜集达人应助yoyo采纳,获得10
7秒前
7秒前
8秒前
Alan弟弟发布了新的文献求助10
8秒前
路过蜻蜓完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940647
求助须知:如何正确求助?哪些是违规求助? 4206748
关于积分的说明 13075495
捐赠科研通 3985361
什么是DOI,文献DOI怎么找? 2182177
邀请新用户注册赠送积分活动 1197793
关于科研通互助平台的介绍 1110088