Low-light is More Than Darkness: An Empirical Study on Illumination Types and Enhancement Methods

计算机科学 感知 人工智能 计算机视觉 任务(项目管理) 对象(语法) 实证研究 光场 模式识别(心理学) 数学 工程类 系统工程 神经科学 生物 统计
作者
Hui Sze Liew,Yuen Peng Loh,Simying Ong
标识
DOI:10.1109/apsipaasc58517.2023.10317339
摘要

Low-light images challenge both human perception and computer vision algorithms. Despite notable progress in this field, there are still various gaps that are yet to be investigated, such as the significance of low-light illumination characteristics towards image enhancement and object classification. Therefore, this paper details various analyses to study this phenomenon and provide insights for future developments of algorithms and solutions. Specifically, comparative analysis was done to investigate human and machine perception towards "low-light types", followed by empirical studies on the effect of illumination types towards state-of-the-art image enhancement quality and also their pre-processing capability for downstream task, namely object classification. It is found that illumination types significantly influences the performance of enhancement algorithms that tend to cater for a "general" type of low-light illumination. This lack of illumination type awareness therefore leads models to perform well in certain conditions, but severely underperforms in others. Thus, it is imperative for upcoming works to incorporate such illumination information for potential breakthroughs in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xin关闭了xin文献求助
刚刚
kinger发布了新的文献求助10
1秒前
北海发布了新的文献求助10
1秒前
酷波er应助jia采纳,获得10
2秒前
所所应助哇哈哈采纳,获得10
2秒前
3秒前
Lucas应助无敌吴硕采纳,获得10
4秒前
无名完成签到,获得积分20
5秒前
大个应助LshZzz采纳,获得10
5秒前
Acoustics完成签到,获得积分10
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
想人陪的皮带完成签到,获得积分10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得20
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
7秒前
李喜喜完成签到,获得积分10
7秒前
科研通AI2S应助无名采纳,获得10
8秒前
xmut完成签到 ,获得积分10
8秒前
yi完成签到,获得积分10
8秒前
BillHong应助萌太狼采纳,获得10
9秒前
汎影发布了新的文献求助10
10秒前
花怂怂完成签到 ,获得积分20
10秒前
10秒前
10秒前
CipherSage应助和谐的火龙果采纳,获得10
11秒前
11秒前
认真平蓝完成签到,获得积分10
11秒前
pluto应助BBQ采纳,获得150
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488751
求助须知:如何正确求助?哪些是违规求助? 3076283
关于积分的说明 9144615
捐赠科研通 2768593
什么是DOI,文献DOI怎么找? 1519274
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701952