A Liver Stiffness–Based Etiology-Independent Machine Learning Algorithm to Predict Hepatocellular Carcinoma

医学 肝细胞癌 内科学 病因学 算法 人工智能 机器学习 计算机科学
作者
Huapeng Lin,Guanlin Li,Adèle Delamarre,Sang Hoon Ahn,Xinrong Zhang,Beom Kyung Kim,Lilian Yan Liang,Hye Won Lee,Grace Lai‐Hung Wong,Pong C. Yuen,Henry Lik-Yuen Chan,Stephen L. Chan,Vincent Wai‐Sun Wong,Victor de Lédinghen,Seung Up Kim,Terry Cheuk‐Fung Yip
出处
期刊:Clinical Gastroenterology and Hepatology [Elsevier]
卷期号:22 (3): 602-610.e7 被引量:7
标识
DOI:10.1016/j.cgh.2023.11.005
摘要

Background & Aims

The existing hepatocellular carcinoma (HCC) risk scores have modest accuracy, and most are specific to chronic hepatitis B infection. In this study, we developed and validated a liver stiffness–based machine learning algorithm (ML) for prediction and risk stratification of HCC in various chronic liver diseases (CLDs).

Methods

MLs were trained for prediction of HCC in 5155 adult patients with various CLDs in Korea and further tested in 2 prospective cohorts from Hong Kong (HK) (N = 2732) and Europe (N = 2384). Model performance was assessed according to Harrell's C-index and time-dependent receiver operating characteristic (ROC) curve.

Results

We developed the SMART-HCC score, a liver stiffness–based ML HCC risk score, with liver stiffness measurement ranked as the most important among 9 clinical features. The Harrell's C-index of the SMART-HCC score in HK and Europe validation cohorts were 0.89 (95% confidence interval, 0.85–0.92) and 0.91 (95% confidence interval, 0.87–0.95), respectively. The area under ROC curves of the SMART-HCC score for HCC in 5 years was ≥0.89 in both validation cohorts. The performance of SMART-HCC score was significantly better than existing HCC risk scores including aMAP score, Toronto HCC risk index, and 7 hepatitis B–related risk scores. Using dual cutoffs of 0.043 and 0.080, the annual HCC incidence was 0.09%–0.11% for low-risk group and 2.54%–4.64% for high-risk group in the HK and Europe validation cohorts.

Conclusions

The SMART-HCC score is a useful machine learning–based tool for clinicians to stratify HCC risk in patients with CLDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ChiHiRo9Q完成签到,获得积分10
1秒前
虚幻初之完成签到,获得积分10
2秒前
才下眉头完成签到,获得积分10
3秒前
毛毛完成签到,获得积分10
3秒前
睡不醒完成签到,获得积分20
3秒前
科研通AI2S应助高兴水瑶采纳,获得10
4秒前
5秒前
6秒前
顺手手完成签到,获得积分10
6秒前
坚强血茗发布了新的文献求助10
7秒前
7秒前
sss完成签到,获得积分20
8秒前
8秒前
Lojong完成签到,获得积分10
9秒前
张朝凯完成签到,获得积分10
9秒前
比巴卜完成签到,获得积分20
10秒前
蜘蛛抱蛋完成签到,获得积分10
11秒前
xzc发布了新的文献求助10
11秒前
11秒前
12秒前
张朝凯发布了新的文献求助30
13秒前
要开心发布了新的文献求助10
14秒前
嗷呜完成签到 ,获得积分20
14秒前
什么东西完成签到,获得积分10
14秒前
15秒前
phw2333完成签到,获得积分10
16秒前
16秒前
不吃香菜完成签到,获得积分10
16秒前
科研通AI2S应助田所浩二采纳,获得10
18秒前
共享精神应助愤怒的念梦采纳,获得10
18秒前
CWT完成签到,获得积分10
18秒前
18秒前
科目三应助杨瑞采纳,获得10
18秒前
我是老大应助坚强血茗采纳,获得10
19秒前
皮皮虾发布了新的文献求助10
19秒前
含蓄心锁完成签到,获得积分20
20秒前
要开心完成签到,获得积分10
20秒前
Owen应助畅畅采纳,获得10
21秒前
21秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137930
求助须知:如何正确求助?哪些是违规求助? 2788832
关于积分的说明 7788793
捐赠科研通 2445241
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046