A Liver Stiffness–Based Etiology-Independent Machine Learning Algorithm to Predict Hepatocellular Carcinoma

医学 肝细胞癌 内科学 病因学 算法 人工智能 机器学习 计算机科学
作者
Huapeng Lin,Guanlin Li,Adèle Delamarre,Sang Hoon Ahn,Xinrong Zhang,Beom Kyung Kim,Lilian Yan Liang,Hye Won Lee,Grace Lai‐Hung Wong,Pong C. Yuen,Henry Lik-Yuen Chan,Stephen L. Chan,Vincent Wai‐Sun Wong,Victor de Lédinghen,Seung Up Kim,Terry Cheuk‐Fung Yip
出处
期刊:Clinical Gastroenterology and Hepatology [Elsevier]
卷期号:22 (3): 602-610.e7 被引量:11
标识
DOI:10.1016/j.cgh.2023.11.005
摘要

Background & Aims

The existing hepatocellular carcinoma (HCC) risk scores have modest accuracy, and most are specific to chronic hepatitis B infection. In this study, we developed and validated a liver stiffness–based machine learning algorithm (ML) for prediction and risk stratification of HCC in various chronic liver diseases (CLDs).

Methods

MLs were trained for prediction of HCC in 5155 adult patients with various CLDs in Korea and further tested in 2 prospective cohorts from Hong Kong (HK) (N = 2732) and Europe (N = 2384). Model performance was assessed according to Harrell's C-index and time-dependent receiver operating characteristic (ROC) curve.

Results

We developed the SMART-HCC score, a liver stiffness–based ML HCC risk score, with liver stiffness measurement ranked as the most important among 9 clinical features. The Harrell's C-index of the SMART-HCC score in HK and Europe validation cohorts were 0.89 (95% confidence interval, 0.85–0.92) and 0.91 (95% confidence interval, 0.87–0.95), respectively. The area under ROC curves of the SMART-HCC score for HCC in 5 years was ≥0.89 in both validation cohorts. The performance of SMART-HCC score was significantly better than existing HCC risk scores including aMAP score, Toronto HCC risk index, and 7 hepatitis B–related risk scores. Using dual cutoffs of 0.043 and 0.080, the annual HCC incidence was 0.09%–0.11% for low-risk group and 2.54%–4.64% for high-risk group in the HK and Europe validation cohorts.

Conclusions

The SMART-HCC score is a useful machine learning–based tool for clinicians to stratify HCC risk in patients with CLDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy完成签到,获得积分10
刚刚
开心果子发布了新的文献求助10
刚刚
云痴子完成签到,获得积分10
1秒前
SciGPT应助粥粥采纳,获得10
1秒前
1秒前
1秒前
2秒前
苏源完成签到,获得积分10
2秒前
wu关闭了wu文献求助
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
Shawn完成签到,获得积分10
5秒前
yltstt完成签到,获得积分10
6秒前
李小新发布了新的文献求助10
6秒前
成梦发布了新的文献求助10
7秒前
乐乐应助xuex1采纳,获得10
7秒前
蜂鸟5156发布了新的文献求助10
7秒前
李爱国应助VDC采纳,获得10
8秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
ns完成签到,获得积分10
9秒前
细腻晓露发布了新的文献求助10
9秒前
李本来发布了新的文献求助10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得30
10秒前
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
NN应助科研通管家采纳,获得10
10秒前
科研通AI5应助幽默的宛白采纳,获得30
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808