Development and validation of a simple nomogram for predicting the short-term prognosis of patients with pulmonary embolism

列线图 医学 接收机工作特性 肺栓塞 曲线下面积 内科学 心脏病学 比例危险模型 外科
作者
Jia-Liang Zhu,Shiqi Yuan,Xinyi Wei,Haiyan Yin,Xuehao Lu,Jianrui Wei,Jun Lyu
出处
期刊:Heart & Lung [Elsevier]
卷期号:57: 144-151
标识
DOI:10.1016/j.hrtlng.2022.09.010
摘要

Pulmonary embolism (PE) is a disease caused by blood clots, tumor embolism, and other emboli within the pulmonary arteries. Various scoring scales are used for PE. One such same is the PESI, but it has 12 variables, making it inconvenient for clinical application.The aim of this study was to develop a new simple nomogram model to assess 30-day survival in PE patients. The new nomogram makes it easier and faster for clinicians to assess the prognosis of patients with PE.We collected data about the patients with PE from the Medical Information Mart for Intensive Care-III (MIMIC-III) database and used the receiver operating characteristic (ROC) curve, area under the ROC curve (AUROC), calibration plot, integrated discrimination improvement (IDI), and decision curve analysis (DCA) to evaluate the predictive power of the new model, and compared these with the PESI.According to the multivariable Cox regression model results, alongside the actual clinical conditions, we included the following seven variables: race, bicarbonate, age, tumor, systolic blood pressure (SBP), body temperature, and oxygen saturation (Spo2). The AUROC of the new model was greater than 0.70. Its IDI exceeded 0, but with P-value>0.05.The predictive performance of the new model was not worse than the PESI, but the new model only has seven variables, and is therefore more convenient for clinicians to use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt666发布了新的文献求助10
1秒前
科研通AI2S应助Foremelon采纳,获得10
1秒前
十言发布了新的文献求助10
2秒前
悲伤半导体应助fangfang采纳,获得10
3秒前
悲伤半导体应助fangfang采纳,获得10
3秒前
SciGPT应助fangfang采纳,获得10
3秒前
小绿茶完成签到,获得积分10
4秒前
HP完成签到,获得积分10
4秒前
科研通AI2S应助简单灵凡采纳,获得10
4秒前
SciGPT应助zhang-leo采纳,获得10
5秒前
6秒前
jasmine完成签到 ,获得积分10
6秒前
Hello应助一叶扁舟采纳,获得10
6秒前
水电费完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
dong发布了新的文献求助10
9秒前
9秒前
欧了买了噶完成签到,获得积分20
10秒前
10秒前
英姑应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
najibveto应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
新青年应助科研通管家采纳,获得10
11秒前
17应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
薰硝壤应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
薰硝壤应助科研通管家采纳,获得10
11秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919